1.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
2.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
3.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
4.Preoperative Serum Copeptin Can Predict Delayed Hyponatremia after Pituitary Surgery in the Absence of Arginine Vasopressin Deficiency
Ho KANG ; Seung Shin PARK ; Yoo Hyung KIM ; Hwan Sub LIM ; Mi-Kyeong LEE ; Kyoung-Ryul LEE ; Jung Hee KIM ; Yong Hwy KIM
Endocrinology and Metabolism 2024;39(1):164-175
Background:
Delayed postoperative hyponatremia (DPH) is the most common cause of readmission after pituitary surgery. In this study, we aimed to evaluate the cutoff values of serum copeptin and determine the optimal timing for copeptin measurement for the prediction of the occurrence of DPH in patients who undergo endoscopic transsphenoidal approach (eTSA) surgery and tumor resection.
Methods:
This was a prospective observational study of 73 patients who underwent eTSA surgery for pituitary or stalk lesions. Copeptin levels were measured before surgery, 1 hour after extubation, and on postoperative days 1, 2, 7, and 90.
Results:
Among 73 patients, 23 patients (31.5%) developed DPH. The baseline ratio of copeptin to serum sodium level showed the highest predictive performance (area under the curve [AUROC], 0.699), and its optimal cutoff to maximize Youden’s index was 2.5×10–11, with a sensitivity of 91.3% and negative predictive value of 92.0%. No significant predictors were identified for patients with transient arginine vasopressin (AVP) deficiency. However, for patients without transient AVP deficiency, the copeptin-to-urine osmolarity ratio at baseline demonstrated the highest predictive performance (AUROC, 0.725). An optimal cutoff of 6.5×10–12 maximized Youden’s index, with a sensitivity of 92.9% and a negative predictive value of 94.1%.
Conclusion
The occurrence of DPH can be predicted using baseline copeptin and its ratio with serum sodium or urine osmolarity only in patients without transient AVP deficiency after pituitary surgery.
5.Differences in Type 2 Fiber Composition in the Vastus Lateralis and Gluteus Maximus of Patients with Hip Fractures
Jingwen TIAN ; Minchul SONG ; Kyu Jeong CHO ; Ho Yeop LEE ; Sang Hyeon JU ; Jung Ryul LIM ; Ha Thi NGA ; Thi Linh NGUYEN ; Ji Sun MOON ; Hyo Ju JANG ; Jung-Mo HWANG ; Hyon-Seung YI
Endocrinology and Metabolism 2024;39(3):521-530
Background:
Aging leads to sarcopenia, which is characterized by reduced muscle mass and strength. Many factors, including altered muscle protein turnover, diminished neuromuscular function, hormonal changes, systemic inflammation, and the structure and composition of muscle fibers, play a crucial role in age-related muscle decline. This study explored differences in muscle fiber types contributing to overall muscle function decline in aging, focusing on individuals with hip fractures from falls.
Methods:
A pilot study at Chungnam National University Hospital collected muscle biopsies from hip fracture patients aged 20 to 80 undergoing surgical treatment. Muscle biopsies from the vastus lateralis and gluteus maximus were obtained during hip arthroplasty or internal fixation. Handgrip strength, calf and thigh circumference, and bone mineral density were evaluated in individuals with hip fractures from falls. We analyzed the relationships between each clinical characteristic and muscle fiber type.
Results:
In total, 26 participants (mean age 67.9 years, 69.2% male) were included in this study. The prevalence of sarcopenia was 53.8%, and that of femoral and lumbar osteoporosis was 19.2% and 11.5%, respectively. Vastus lateralis analysis revealed an age-related decrease in type IIx fibers, a higher proportion of type IIa fibers in women, and an association between handgrip strength and type IIx fibers in men. The gluteus maximus showed no significant correlations with clinical parameters.
Conclusion
This study identified complex associations between age, sex, handgrip strength, and muscle fiber composition in hip fracture patients, offering insights crucial for targeted interventions combating age-related muscle decline and improving musculoskeletal health.
6.Inflammation is responsible for systemic bone loss in patients with seropositive rheumatoid arthritis treated with rituximab
Mie Jin LIM ; Kyong-Hee JUNG ; Seong-Ryul KWON ; Won PARK
The Korean Journal of Internal Medicine 2023;38(6):912-922
Background/Aims:
We investigated the effect of rituximab on systemic bone metabolism in patients with seropositive rheumatoid arthritis (RA).
Methods:
Twenty seropositive patients with RA were enrolled and administered one cycle of rituximab. If RA became active for > 6 months after the first rituximab cycle, a second cycle was initiated; otherwise, no additional treatment was administered. Patients were divided into two groups according to the number of rituximab treatment cycles.
Results:
In patients treated with a second cycle, the total hip bone mineral density (BMD) was clinically low, whereas the serum levels of receptor activator of nuclear factor kappa-B ligand (RANKL) were increased at 12 months. BMD in patients treated with one cycle did not change at 12 months, whereas serum RANKL levels decreased at all time points. DAS28 activity improved in both groups from baseline to 4 months; however, from 4 to 12 months, DAS28 activity worsened in the develgroup with the second cycle but remained stable in the group with one cycle.
Conclusions
Systemic inflammation, reflected by increased disease activity, may be responsible for the increase in RANKL levels, which causes systemic bone loss in rituximab-treated patients with RA. Although rituximab affects inflammation, it does not seem to alter systemic bone metabolism in RA.
7.PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis
Juyoung KIM ; Kyung Hee JUNG ; Jaeho YOO ; Jung Hee PARK ; Hong Hua YAN ; Zhenghuan FANG ; Joo Han LIM ; Seong-Ryul KWON ; Myung Ku KIM ; Hyun-Ju PARK ; Soon-Sun HONG
Biomolecules & Therapeutics 2020;28(2):172-183
Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.
8.Maintenance of hPSCs under Xeno-Free and Chemically Defined Culture Conditions
Jung Jin LIM ; Hyung Joon KIM ; Byung Ho RHIE ; Man Ryul LEE ; Myeong Jun CHOI ; Seok Ho HONG ; Kye Seong KIM
International Journal of Stem Cells 2019;12(3):484-496
Previously, the majority of human embryonic stem cells and human induced pluripotent stem cells have been derived on feeder layers and chemically undefined medium. Those media components related to feeder cells, or animal products, often greatly affect the consistency of the cell culture. There are clear advantages of a defined, xeno-free, and feeder-free culture system for human pluripotent stem cells (hPSCs) cultures, since consistency in the formulations prevents lot-to-lot variability. Eliminating all non-human components reduces health risks for downstream applications, and those environments reduce potential immunological reactions from stem cells. Therefore, development of feeder-free hPSCs culture systems has been an important focus of hPSCs research. Recently, researchers have established a variety of culture systems in a defined combination, xeno-free matrix and medium that supports the growth and differentiation of hPSCs. Here we described detailed hPSCs culture methods under feeder-free and chemically defined conditions using vitronetin and TeSR-E8 medium including supplement bioactive lysophospholipid for promoting hPSCs proliferation and maintaining stemness.
Animals
;
Cell Culture Techniques
;
Embryonic Stem Cells
;
Extracellular Matrix
;
Feeder Cells
;
Human Embryonic Stem Cells
;
Humans
;
Induced Pluripotent Stem Cells
;
Pluripotent Stem Cells
;
Stem Cells
9.Report on the External Quality Assessment Scheme for Blood Gas (Central Laboratory and Point-of-Care Testing) and Glucose (Point-of-Care Testing) Analysis in Korea (2016–2017).
Jinsook LIM ; Hee Jung CHUNG ; Byung Ryul JEON ; Gye Cheol KWON
Journal of Laboratory Medicine and Quality Assurance 2018;40(4):171-177
In the 2016 and 2017 programs for blood gas analysis (BGA) in central laboratory and by point-of-care testing (POCT), and glucose analysis by POCT, external quality assessment of 9, 3, and 1 analytes, respectively, was performed each year. The materials used were commercially available quality control materials, and three levels were used per trial. Based on the information and results from each participating laboratory, statistical analysis was carried out. Results were provided to each laboratory through individual and comprehensive reports. The mean response rates were 96.6%, 96.5%, and 95.6% for BGA in central laboratory, BGA (POCT), and glucose (POCT), respectively. The number of participating laboratories in BGA (central laboratory and POCT) in 2017 was not significantly different from that in 2016. However, in the glucose (POCT) program, the number of registered instruments sharply increased in 2017 as the allowable number of registered instruments was increased from 5 to 30. The coefficient of variation (CV) did not show any significant differences in pH, sodium, chloride, and ionized calcium of BGA. However, the differences of CV were found to be relative large between instruments in other analytes of BGA and glucose POCT.
Blood Gas Analysis
;
Calcium
;
Glucose*
;
Hydrogen-Ion Concentration
;
Korea*
;
Point-of-Care Systems*
;
Point-of-Care Testing
;
Quality Control
;
Sodium
10.Palisaded Neutrophilic Granulomatous Dermatitis in a Patient with Systemic Sclerosis-Rheumatoid Arthritis Overlap Syndrome.
Kyong Hee JUNG ; Sangho JEONG ; Seong Ryul KWON ; Mie Jin LIM ; Jiyeon GWON ; Jeonghyun SHIN ; Won PARK
Annals of Dermatology 2017;29(6):804-806
No abstract available.
Arthritis*
;
Dermatitis*
;
Humans
;
Neutrophils*

Result Analysis
Print
Save
E-mail