1.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
2.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
3.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
4.Primary Cutaneous CD30+ Lymphoproliferative Disorders in South Korea: A Nationwide, Multi-Center, Retrospective, Clinical, and Prognostic Study
Woo Jin LEE ; Sook Jung YUN ; Joon Min JUNG ; Joo Yeon KO ; Kwang Ho KIM ; Dong Hyun KIM ; Myung Hwa KIM ; You Chan KIM ; Jung Eun KIM ; Chan-Ho NA ; Je-Ho MUN ; Jong Bin PARK ; Ji-Hye PARK ; Hai-Jin PARK ; Dong Hoon SHIN ; Jeonghyun SHIN ; Sang Ho OH ; Seok-Kweon YUN ; Dongyoun LEE ; Seok-Jong LEE ; Seung Ho LEE ; Young Bok LEE ; Soyun CHO ; Sooyeon CHOI ; Jae Eun CHOI ; Mi Woo LEE ; On behalf of The Korean Society of Dermatopathology
Annals of Dermatology 2025;37(2):75-85
Background:
Primary cutaneous CD30+ lymphoproliferative disorders (pcCD30-LPDs) are a diseases with various clinical and prognostic characteristics.
Objective:
Increasing our knowledge of the clinical characteristics of pcCD30-LPDs and identifying potential prognostic variables in an Asian population.
Methods:
Clinicopathological features and survival data of pcCD30-LPD cases obtained from 22 hospitals in South Korea were examined.
Results:
A total of 413 cases of pcCD30-LPDs (lymphomatoid papulosis [LYP], n=237; primary cutaneous anaplastic large cell lymphoma [C-ALCL], n=176) were included. Ninety percent of LYP patients and roughly 50% of C-ALCL patients presented with multiple skin lesions. Both LYP and C-ALCL affected the lower limbs most frequently. Multiplicity and advanced T stage of LYP lesions were associated with a chronic course longer than 6 months. Clinical morphology with patch lesions and elevated serum lactate dehydrogenase were significantly associated with LPDs during follow-up in LYP patients. Extracutaneous involvement of C-ALCL occurred in 13.2% of patients. Lesions larger than 5 cm and increased serum lactate dehydrogenase were associated with a poor prognosis in C-ALCL. The survival of patients with C-ALCL was unaffected by the anatomical locations of skin lesions or other pathological factors.
Conclusion
The multiplicity or size of skin lesions was associated with a chronic course of LYP and survival among patients with C-ALCL.
5.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
6.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
7.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
8.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
9.Exposure to air pollution and precocious puberty:a systematic review
Rosie LEE ; Jongmin OH ; Eunji MUN ; Jung Eun CHOI ; Kyung Hee KIM ; Ji Hyen LEE ; Hae Soon KIM ; Eunhee HA
The Ewha Medical Journal 2024;47(2):e20-
The worldwide incidence of precocious puberty, which is associated with negative health outcomes, is increasing. Several studies have suggested that environmental factors contribute to the development of precocious puberty alongside genetic factors. Some epidemiological studies have provided limited evidence suggesting an association between exposure to air pollution and changes in pubertal development. This systematic review aimed to summarize existing evidence on the association between air pollution exposure and precocious puberty. Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines, we searched two databases (PubMed and Web of Science) until August 2023. The included studies assessed the association between air pollutant exposure and the risk of precocious puberty, early menarche, or pubertal development. Two authors independently performed study selection and data extraction. A meta-analysis and analysis of the risk of bias were infeasible due to the limited number of studies and the heterogeneity among them. The literature search resulted in 184 studies, from which we included six studies with sample sizes ranging from 437 to 4,074 participants. The studies reported heterogeneous outcomes. Four studies found that increased exposure to air pollution was related to earlier pubertal onset. One study was inconclusive, and another suggested that air pollutant exposure may delay the onset of thelarche. Most studies suggest that exposure to air pollutants accelerates pubertal development; however, the results from the available studies are inconsistent. More extensive and well-designed longitudinal studies are required for a comprehensive understanding of the association between air pollution and precocious puberty.
10.Intensified First Cycle of Rituximab Plus Eight Cycles of Cyclophosphamide, Doxorubicin, Vincristine, and Prednisolone with Rituximab Chemotherapy for Advanced-Stage or Bulky Diffuse Large B-Cell Lymphoma: A Multicenter Phase II Consortium for Improving Survival of Lymphoma (CISL) Study
Yu Ri KIM ; Jin Seok KIM ; Won Seog KIM ; Hyeon Seok EOM ; Deok-Hwan YANG ; Sung Hwa BAE ; Hyo Jung KIM ; Jae Hoon LEE ; Suk-Joong OH ; Sung-Soo YOON ; Jae-Yong KWAK ; Chul Won CHOI ; Min Kyoung KIM ; Sung Young OH ; Hye Jin KANG ; Seung Hyun NAM ; Hyeok SHIM ; Joon Seong PARK ; Yeung-Chul MUN ; Cheolwon SUH ;
Cancer Research and Treatment 2023;55(4):1355-1362
Purpose:
This phase II, open-label, multicenter study aimed to investigate the efficacy and safety of a rituximab intensification for the 1st cycle with every 21-day of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP-21) among patients with previously untreated advanced-stage or bulky diffuse large B-cell lymphoma (DLBCL).
Materials and Methods:
Ninety-two patients with stage III/IV or bulky DLBCL from 21 institutions were administered 8 cycles of R-CHOP-21 with an additional one dose of rituximab intensification on day 0 of the 1st cycle (RR-CHOP). The primary endpoint was a complete response (CR) rate after 3 cycles of chemotherapy.
Results:
Among the 92 DLBCL patients assessed herein, the response rate after 3 cycles of chemotherapy was 88.0% (38.0% CR+50.0% partial response [PR]). After the completion of 8 cycles of chemotherapy, the overall response rate was observed for 68.4% (58.7% CR+9.8% PR). The 3-year progression-free survival rate was 64.0%, and the 3-year overall survival rate was 70.4%. Febrile neutropenia was one of the most frequent grade 3 adverse events (40.0%) and 5 treatment-related deaths occurred. Compared with the clinical outcomes of patients who received R-CHOP chemotherapy as a historical control, the interim CR rate was higher in male patients with RR-CHOP (20.5% vs. 48.8%, p=0.016).
Conclusion
Rituximab intensification on days 0 to the 1st cycle of the standard 8 cycles R-CHOP-21 for advanced DLBCL yielded favorable response rates after the 3 cycles of chemotherapy and acceptable toxicities, especially for male patients. ClinicalTrials.gov ID: NCT01054781.

Result Analysis
Print
Save
E-mail