1.Potential of histone deacetylase 6 inhibitors in alleviating chemotherapy-induced peripheral neuropathy
Su Jung PARK ; Soung-Min LEE ; Seong Mook KANG ; Hyun-Mo YANG ; Su-Kil SEO ; Ju-Hee LEE
The Korean Journal of Pain 2025;38(2):152-162
Background:
Histone deacetylase 6 (HDAC6), belonging to class IIb of histone deacetylases, regulates theacetylation of the cytoplasmic protein α-tubulin. The overexpression of HDAC6 is linked to the development oftumors, and inhibiting HDAC6 is known to trigger apoptosis in multiple myeloma cells. In addition to its application in cancer treatment, bortezomib, a proteasome inhibitor, is widely used in managing multiple myeloma and has shown effectiveness in patients with both newly diagnosed and relapsed disease. However, the treatment regimen may be delayed or discontinued due to the risk of peripheral neuropathy, a significant non-hematologic side effect.
Methods:
Animal models of peripheral neuropathy induced by various anti-cancer drugs were established, confirming the potential of HDAC6 inhibitors as a treatment for this condition. Six- to eight-week-old male Sprague Dawley rats were utilized to create these models. Mechanical allodynia and electron microscopy served as indicators of peripheral neuropathy. The HDAC6 inhibitor CKD-011 was administered at doses of 5, 10, 20, and 40 mg/kg.
Results:
In an animal model of bortezomib-induced peripheral neuropathy, CKD-011, an HDAC6 inhibitor, effectively ameliorated peripheral neuropathy. Similarly, CKD-011 administration demonstrated recovery from peripheral neuropathy in models induced with oxaliplatin, paclitaxel, and cisplatin.
Conclusions
These findings suggest that HDAC6 inhibitors have the potential to mitigate peripheral neuropathy induced by chemotherapeutic agents.
2.Perceptions of treatment, accompanying symptoms, and other problems in patients with chronic pain: a multicenter cross-sectional study in Korea
Jieun BAE ; Yun Hee LIM ; Sung Jun HONG ; Jae Hun JEONG ; Hey Ran CHOI ; Sun Kyung PARK ; Jung Eun KIM ; Jae Hun KIM
The Korean Journal of Pain 2025;38(1):69-78
Background:
Chronic pain significantly affects daily activities, mental health, and the interpersonal relationships of patients. Consequently, physicians use various treatments to manage pain. This study investigated the perceptions of treatment, accompanying symptoms, and other problems in patients with chronic pain.
Methods:
The authors enrolled patients with chronic pain from 19 university hospitals in South Korea. Data was collected on age, gender, diagnosis, disease duration, severity of pain, perception of pain treatment, and accompanying symptoms or problems using an anonymous survey comprising 19 questions.
Results:
In total, 833 patients with chronic pain completed the survey, and 257 (31.0%) and 537 (64.5%) patientsexpressed concerns about the potential adverse effects of medication and opioid addiction, respectively. Personalitychanges such as irritability or anger were the most frequent accompanying symptoms in 507 (63.8%) patients, followed by depression and sleep disturbance in 462 (58.1%) and 450 (54.5%) patients, respectively. Depression (P = 0.001) and anxiety (P = 0.029) were more common among women, whereas divorce (P = 0.016), family conflict (P < 0.001), unemployment (P < 0.001), suicide attempts (P < 0.001), and restrictions on economic activity (P < 0.001) were more common among men. The frequency of accompanying symptoms, except for suicidal ideation,was higher in the younger patients aged ≤ 40 years than in the older patients aged > 40 years.
Conclusions
Many patients with chronic pain had concerns about adverse effects or medication tolerance and experienced anxiety, depression, or sleep disturbances. The prevalence of accompanying problems varies according to age and gender.
3.Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis
Na Kyeong PARK ; Yun-Gwi PARK ; Ji-Hee CHOI ; Hyung Kyu CHOI ; Sung-Hwan MOON ; Soon-Jung PARK ; Seong Woo CHOI
The Korean Journal of Physiology and Pharmacology 2025;29(2):257-269
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses.Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
4.Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis
Jin-Ho PARK ; Han-Sol BAE ; Ingeun KIM ; Jiwoon JUNG ; Yoonho ROH ; Dongbin LEE ; Tae Sung HWANG ; Hee-Chun LEE ; June-Ho BYUN
Tissue Engineering and Regenerative Medicine 2025;22(1):145-157
BACKGROUND:
Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
METHODS:
This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DWMSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
RESULTS:
Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
CONCLUSION
Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
5.Understanding of Patients with Severe COVID-19 Using Lung Ultrasound
Seo-Hee YANG ; Eun Ju PARK ; Jung-Hyun KIM ; Jin Woo SONG ; Young-Jae CHO
Tuberculosis and Respiratory Diseases 2025;88(2):380-387
Background:
Lung ultrasound (LUS) has proven valuable in the initial assessment of coronavirus disease 2019 (COVID-19), but its role in detecting pulmonary fibrosis following intensive care remains unclear. This study aims to assess the presence of pulmonary sequelae and fibrosis-like changes using LUS in survivors of severe COVID-19 pneumonia one month after discharge.
Methods:
We prospectively enrolled patients with severe COVID-19 who required mechanical ventilation in the intensive care unit (ICU) and conducted LUS assessments from admission to the outpatient visit after discharge. We tracked changes in key LUS findings and applied our proprietary LUS scoring system. To evaluate LUS accuracy, we correlated measured LUS values with computed tomography scores.
Results:
We evaluated B-line presence, pleural thickness, and consolidation in 14 eligible patients. The LUS scores exhibited minimal changes, with values of 19.1, 19.2, and 17.5 at admission, discharge, and the outpatient visit, respectively. Notably, the number of B-lines decreased significantly, from 1.92 at admission to 0.56 at the outpatient visit (p<0.05), while pleural thickness increased significantly, from 2.05 at admission to 2.48 at the outpatient visit (p≤0.05).
Conclusion
This study demonstrates that LUS can track changes in lung abnormalities in severe COVID-19 patients from ICU admission through to outpatient follow-up. While pleural thickening and B-line patterns showed significant changes, no correlation was found between LUS and high-resolution computed tomography fibrosis scores. These findings suggest that LUS may serve as a supplementary tool for assessing pulmonary recovery in severe COVID-19 cases.
6.Vitamin D Attenuates Non-Alcoholic Fatty Liver Disease in High-Fat Diet-Induced Obesity Murine Model
Sook In CHUNG ; Lin LIANG ; Heejae HAN ; Kyung Hee PARK ; Jae-Hyun LEE ; Jung-Won PARK
Yonsei Medical Journal 2025;66(2):75-86
Purpose:
Obesity and metabolic syndrome are acknowledged as key factors contributing to the development of non-alcoholic fatty liver disease (NAFLD). Vitamin D (VitD) is a multifaceted secosteroid hormone known for its anti-fibrotic and anti-inflammatory properties, with its deficiency often linked to obesity. Our study aimed to investigate whether VitD supplementation could mitigate the liver pathology associated with NAFLD.
Materials and Methods:
The NAFLD model was developed by subjecting male C57BL/6 mice to a high-fat diet (HFD) for 14 weeks.These mice were supplemented with VitD through intraperitoneal injection at a dosage of 7 μg/kg, administered three times per week for 7 weeks.
Results:
HFD resulted in VitD deficiency, insulin resistance, and increased liver weight. It elevated serum levels of liver aminotransferases and triglyceride, ultimately leading to steatohepatitis with fibrosis. This model exhibited increased levels of transforming growth factor (TGF)-β1, pro-inflammatory cytokines, HNF4α transcription factors, reactive oxygen species (ROS), renin-angiotensin system activity, and epithelial-mesenchymal transitions (EMT) within the liver. Supplementation with VitD resulted in the recovery of liver weight, improvement in histologic features associated with steatohepatitis, and reduction in alanine aminotransferases and triglyceride levels induced by the HFD. Additionally, it mitigated the HFD-induced over-expressions of TGF-β1 and fibrosis-related genes, along with pro-inflammatory cytokines and ROS. Notably, no adverse effect was found due to VitD supplementation in this model.
Conclusion
VitD ameliorates steatohepatitis within obesity-induced NAFLD through its multifaceted pathways. VitD supplementation emerges as a potentially safe, cost-effective, and direct treatment approach for NAFLD patients dealing with obesity or metabolic dysfunction.
7.Mixture of Mastic Gum and Peppermint Extracts Promotes Hair Growth and Health in Vitro and in C57BL/6 Mice
Seoyoon HAM ; Young In LEE ; Yujin JANG ; Sang Gu LEE ; Jangmi SUK ; Inhee JUNG ; Jae Hyun PARK ; Ju Hee LEE
Yonsei Medical Journal 2025;66(5):310-320
Purpose:
Hair disorders, which are often attributed to conditions associated with a shortened anagen growth phase, oxidative stress, and hormonal dysregulation, especially during aging, have profound psychological implications. Currently, only minoxidil has been approved as a topical hair growth solution; thus, alternative therapies for treating hair loss and promoting hair health are urgently needed. Herein, we aimed to develop and assess a novel method to promote hair growth and health using mastic (Pistacia lentiscus) gum and peppermint (Mentha piperita L.) extracts.
Materials and Methods:
After determining the optimal ratio of mastic gum and peppermint extracts, we performed in vitro and in vivo experiments to verify the efficacy of the 7:3 mastic gum-peppermint mixture (MP73; FHH-MG) for enhancing hair growth and health.
Results:
Mastic gum significantly promoted cell proliferation and demonstrated synergistic benefits when combined with peppermint extract. In vitro, FHH-MG increased human dermal follicle papilla cell proliferation and demonstrated anti-inflammatory and antioxidant effects. In vivo, treatment with FHH-MG dose-dependently enhanced hair growth and gloss and increased the expression of vascular endothelial growth factor, epidermal growth factor, β-catenin, and insulin-like growth factor-1 in C57BL/6 mice compared to the negative control.
Conclusion
The novel mixture exhibited hair growth-promoting effects in C57BL/6 mice; thus, FHH-MG may serve as a botanical alternative for hair growth and health promotion.
8.Taurine Synthesis by 2-Aminoethanethiol Dioxygenase as a Vulnerable Metabolic Alteration in Pancreatic Cancer
Hoonsik NAM ; Woohyung LEE ; Yun Ji LEE ; Jin-Mo KIM ; Kyung Hee JUNG ; Soon-Sun HONG ; Song Cheol KIM ; Sunghyouk PARK
Biomolecules & Therapeutics 2025;33(1):143-154
Pancreatic ductal adenocarcinoma (PDAC) exhibits an altered metabolic profile compared to normal pancreatic tissue. However, studies on actual pancreatic tissues are limited. Untargeted metabolomics analysis was conducted on 54 pairs of tumor and matched normal tissues. Taurine levels were validated via immunohistochemistry (IHC) on separate PDAC and normal tissues.Bioinformatics analysis of transcriptomics and proteomics data evaluated genes associated with taurine metabolism. Identified taurine-associated gene was validated through gene modulation. Clinical implications were evaluated using patient data. Metabolomics analysis showed a 2.51-fold increase in taurine in PDAC compared to normal tissues (n=54). IHC confirmed this in independent samples (n=99 PDAC, 19 normal). Bioinformatics identified 2-aminoethanethiol dioxygenase (ADO) as a key gene modulating taurine metabolism. IHC on a tissue microarray (39 PDAC, 10 normal) confirmed elevated ADO in PDAC. The ADOTaurine axis correlated with PDAC recurrence and disease-free survival. ADO knockdown reduced cancer cell proliferation and tumor growth in a mouse xenograft model. The MEK-related signaling pathway is suggested to be modulated by ADO-Taurine metabolism. Our multi-omics investigation revealed elevated taurine synthesis mediated by ADO upregulation in PDAC. The ADOTaurine axis may serve as a biomarker for PDAC prognosis and a therapeutic target.
9.Erratum to "Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress" Biomol Ther 32(3), 349-360 (2024)
Hyun HWANGBO ; Cheol PARK ; EunJin BANG ; Hyuk Soon KIM ; Sung-Jin BAE ; Eunjeong KIM ; Youngmi JUNG ; Sun-Hee LEEM ; Young Rok SEO ; Su Hyun HONG ; Gi-Young KIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):555-555
10.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.

Result Analysis
Print
Save
E-mail