1.Gaps and Similarities in Research Use LOINC Codes Utilized in Korean University Hospitals: Towards Semantic Interoperability for Patient Care
Kuenyoul PARK ; Min-Sun KIM ; YeJin OH ; John Hoon RIM ; Shinae YU ; Hyejin RYU ; Eun-Jung CHO ; Kyunghoon LEE ; Ha Nui KIM ; Inha CHUN ; AeKyung KWON ; Sollip KIM ; Jae-Woo CHUNG ; Hyojin CHAE ; Ji Seon OH ; Hyung-Doo PARK ; Mira KANG ; Yeo-Min YUN ; Jong-Baeck LIM ; Young Kyung LEE ; Sail CHUN
Journal of Korean Medical Science 2025;40(1):e4-
Background:
The accuracy of Logical Observation Identifiers Names and Codes (LOINC) mappings is reportedly low, and the LOINC codes used for research purposes in Korea have not been validated for accuracy or usability. Our study aimed to evaluate the discrepancies and similarities in interoperability using existing LOINC mappings in actual patient care settings.
Methods:
We collected data on local test codes and their corresponding LOINC mappings from seven university hospitals. Our analysis focused on laboratory tests that are frequently requested, excluding clinical microbiology and molecular tests. Codes from nationwide proficiency tests served as intermediary benchmarks for comparison. A research team, comprising clinical pathologists and terminology experts, utilized the LOINC manual to reach a consensus on determining the most suitable LOINC codes.
Results:
A total of 235 LOINC codes were designated as optimal codes for 162 frequent tests.Among these, 51 test items, including 34 urine tests, required multiple optimal LOINC codes, primarily due to unnoted properties such as whether the test was quantitative or qualitative, or differences in measurement units. We analyzed 962 LOINC codes linked to 162 tests across seven institutions, discovering that 792 (82.3%) of these codes were consistent. Inconsistencies were most common in the analyte component (38 inconsistencies, 33.3%), followed by the method (33 inconsistencies, 28.9%), and properties (13 inconsistencies, 11.4%).
Conclusion
This study reveals a significant inconsistency rate of over 15% in LOINC mappings utilized for research purposes in university hospitals, underlining the necessity for expert verification to enhance interoperability in real patient care.
2.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
3.Gaps and Similarities in Research Use LOINC Codes Utilized in Korean University Hospitals: Towards Semantic Interoperability for Patient Care
Kuenyoul PARK ; Min-Sun KIM ; YeJin OH ; John Hoon RIM ; Shinae YU ; Hyejin RYU ; Eun-Jung CHO ; Kyunghoon LEE ; Ha Nui KIM ; Inha CHUN ; AeKyung KWON ; Sollip KIM ; Jae-Woo CHUNG ; Hyojin CHAE ; Ji Seon OH ; Hyung-Doo PARK ; Mira KANG ; Yeo-Min YUN ; Jong-Baeck LIM ; Young Kyung LEE ; Sail CHUN
Journal of Korean Medical Science 2025;40(1):e4-
Background:
The accuracy of Logical Observation Identifiers Names and Codes (LOINC) mappings is reportedly low, and the LOINC codes used for research purposes in Korea have not been validated for accuracy or usability. Our study aimed to evaluate the discrepancies and similarities in interoperability using existing LOINC mappings in actual patient care settings.
Methods:
We collected data on local test codes and their corresponding LOINC mappings from seven university hospitals. Our analysis focused on laboratory tests that are frequently requested, excluding clinical microbiology and molecular tests. Codes from nationwide proficiency tests served as intermediary benchmarks for comparison. A research team, comprising clinical pathologists and terminology experts, utilized the LOINC manual to reach a consensus on determining the most suitable LOINC codes.
Results:
A total of 235 LOINC codes were designated as optimal codes for 162 frequent tests.Among these, 51 test items, including 34 urine tests, required multiple optimal LOINC codes, primarily due to unnoted properties such as whether the test was quantitative or qualitative, or differences in measurement units. We analyzed 962 LOINC codes linked to 162 tests across seven institutions, discovering that 792 (82.3%) of these codes were consistent. Inconsistencies were most common in the analyte component (38 inconsistencies, 33.3%), followed by the method (33 inconsistencies, 28.9%), and properties (13 inconsistencies, 11.4%).
Conclusion
This study reveals a significant inconsistency rate of over 15% in LOINC mappings utilized for research purposes in university hospitals, underlining the necessity for expert verification to enhance interoperability in real patient care.
4.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
5.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
6.Gaps and Similarities in Research Use LOINC Codes Utilized in Korean University Hospitals: Towards Semantic Interoperability for Patient Care
Kuenyoul PARK ; Min-Sun KIM ; YeJin OH ; John Hoon RIM ; Shinae YU ; Hyejin RYU ; Eun-Jung CHO ; Kyunghoon LEE ; Ha Nui KIM ; Inha CHUN ; AeKyung KWON ; Sollip KIM ; Jae-Woo CHUNG ; Hyojin CHAE ; Ji Seon OH ; Hyung-Doo PARK ; Mira KANG ; Yeo-Min YUN ; Jong-Baeck LIM ; Young Kyung LEE ; Sail CHUN
Journal of Korean Medical Science 2025;40(1):e4-
Background:
The accuracy of Logical Observation Identifiers Names and Codes (LOINC) mappings is reportedly low, and the LOINC codes used for research purposes in Korea have not been validated for accuracy or usability. Our study aimed to evaluate the discrepancies and similarities in interoperability using existing LOINC mappings in actual patient care settings.
Methods:
We collected data on local test codes and their corresponding LOINC mappings from seven university hospitals. Our analysis focused on laboratory tests that are frequently requested, excluding clinical microbiology and molecular tests. Codes from nationwide proficiency tests served as intermediary benchmarks for comparison. A research team, comprising clinical pathologists and terminology experts, utilized the LOINC manual to reach a consensus on determining the most suitable LOINC codes.
Results:
A total of 235 LOINC codes were designated as optimal codes for 162 frequent tests.Among these, 51 test items, including 34 urine tests, required multiple optimal LOINC codes, primarily due to unnoted properties such as whether the test was quantitative or qualitative, or differences in measurement units. We analyzed 962 LOINC codes linked to 162 tests across seven institutions, discovering that 792 (82.3%) of these codes were consistent. Inconsistencies were most common in the analyte component (38 inconsistencies, 33.3%), followed by the method (33 inconsistencies, 28.9%), and properties (13 inconsistencies, 11.4%).
Conclusion
This study reveals a significant inconsistency rate of over 15% in LOINC mappings utilized for research purposes in university hospitals, underlining the necessity for expert verification to enhance interoperability in real patient care.
7.Gaps and Similarities in Research Use LOINC Codes Utilized in Korean University Hospitals: Towards Semantic Interoperability for Patient Care
Kuenyoul PARK ; Min-Sun KIM ; YeJin OH ; John Hoon RIM ; Shinae YU ; Hyejin RYU ; Eun-Jung CHO ; Kyunghoon LEE ; Ha Nui KIM ; Inha CHUN ; AeKyung KWON ; Sollip KIM ; Jae-Woo CHUNG ; Hyojin CHAE ; Ji Seon OH ; Hyung-Doo PARK ; Mira KANG ; Yeo-Min YUN ; Jong-Baeck LIM ; Young Kyung LEE ; Sail CHUN
Journal of Korean Medical Science 2025;40(1):e4-
Background:
The accuracy of Logical Observation Identifiers Names and Codes (LOINC) mappings is reportedly low, and the LOINC codes used for research purposes in Korea have not been validated for accuracy or usability. Our study aimed to evaluate the discrepancies and similarities in interoperability using existing LOINC mappings in actual patient care settings.
Methods:
We collected data on local test codes and their corresponding LOINC mappings from seven university hospitals. Our analysis focused on laboratory tests that are frequently requested, excluding clinical microbiology and molecular tests. Codes from nationwide proficiency tests served as intermediary benchmarks for comparison. A research team, comprising clinical pathologists and terminology experts, utilized the LOINC manual to reach a consensus on determining the most suitable LOINC codes.
Results:
A total of 235 LOINC codes were designated as optimal codes for 162 frequent tests.Among these, 51 test items, including 34 urine tests, required multiple optimal LOINC codes, primarily due to unnoted properties such as whether the test was quantitative or qualitative, or differences in measurement units. We analyzed 962 LOINC codes linked to 162 tests across seven institutions, discovering that 792 (82.3%) of these codes were consistent. Inconsistencies were most common in the analyte component (38 inconsistencies, 33.3%), followed by the method (33 inconsistencies, 28.9%), and properties (13 inconsistencies, 11.4%).
Conclusion
This study reveals a significant inconsistency rate of over 15% in LOINC mappings utilized for research purposes in university hospitals, underlining the necessity for expert verification to enhance interoperability in real patient care.
8.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
9.Adjustment Formula for Harmonizing Triglyceride Values in the Korea National Health and Nutrition Examination Survey, 2005–2022
Rihwa CHOI ; Jong Do SEO ; Eun-Jung CHO ; Woochang LEE ; Yeo-Min YUN
Annals of Laboratory Medicine 2025;45(3):291-299
Background:
Korea National Health and Nutrition Examination Survey (KNHANES) triglyceride testing changed from the glycerol blanking method (2005–2021) to the glycerol nonblanking method (2022). We converted triglyceride data from 2005–2021 to that obtained since 2022 with different analytical methods.
Methods:
To develop a conversion equation, 98 fresh serum specimen pairs were compared using Passing–Bablok regression analysis. Implications of the conversion equation on epidemiological data were evaluated using KNHANES data from 2019–2021. Bias estimations determined using the Lipid Standardization Program (LSP) of the United States Centers for Disease Control and Prevention (CDC) enhanced the accuracy and comparability of the triglyceride results.
Results:
Triglyceride concentrations measured via the glycerol non-blanking method were 10.7 mg/dL (0.12 mmol/L, 10.0%) higher than those from the glycerol blanking method, with a 9.9 mg/dL (0.11 mmol/L, 5.0%) difference at a concentration of 200 mg/dL (2.26 mmol/L, N = 98). The conversion equation y (glycerol non-blanking, 2022) = 11.94+0.99x (glycerol blanking, 2005–2021) changed the mean triglyceride concentrations of the KNHANES 2019–2021 data (N = 16,015) from 123.7 mg/dL (1.40 mmol/L, 95% confidence interval [CI]: 122.2–125.1 mg/dL [1.38–1.41 mmol/L]) to 134.3 mg/dL (1.52 mmol/L, 95% CI: 132.9–135.8 mg/dL [1.50–1.53 mmol/L]). Since 2022, bias monitoring using the CDC’s LSP has remained within a 5.0% limit.
Conclusions
KNHANES triglyceride values in 2022 (non-blanking) were substantially higher than those from 2005–2021 (blanking). Conversion equations helped effectively adjust 2005–2021 data. Researchers should consider adjusting the KNHANES triglyceride data based on their study characteristics.
10.Standardized Medical Terminology: Awareness and Application Among Members of the Korean Society for Laboratory Medicine
Shinae YU ; Byung Ryul JEON ; Changseung LIU ; Dokyun KIM ; Hae-Il PARK ; Hyung Doo PARK ; Jeong Hwan SHIN ; Jun Hyung LEE ; Qute CHOI ; Sollip KIM ; Yeo Min YUN ; Eun-jung CHO ;
Annals of Laboratory Medicine 2025;45(6):635-637

Result Analysis
Print
Save
E-mail