1.Sesquiterpene ZH-13 from Aquilariae Lignum Resinatum Improves Neuroinflammation by Regulating JNK Phosphorylation
Ziyu YIN ; Yun GAO ; Junjiao WANG ; Weigang XUE ; Xueping PANG ; Huiting LIU ; Yunfang ZHAO ; Huixia HUO ; Jun LI ; Jiao ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):139-145
ObjectiveTo study the pharmacological substances and mechanisms through which sesquiterpene ZH-13 from Aquilariae Lignum Resinatum improves neuroinflammation. MethodsBV-2 microglial cells were stimulated with lipopolysaccharide (LPS) to induce neuroinflammation. The cells were divided into the normal group, the model group, and the ZH-13 low- and high-dose treatment groups (10, 20 μmol·L-1). The model group was treated with 1 μmol·L-1 LPS. Cell viability was assessed using the cell proliferation and activity assay (CCK-8 kit). Nitric oxide (NO) release in the cell supernatant was measured using a nitric oxide kit (Griess method). The mRNA expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin-6 (IL-6) were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The phosphorylation of mitogen-activated protein kinase (MAPK) pathway proteins was assessed by Western blot. ResultsCompared with the model group, ZH-13 dose-dependently reduced NO release from BV-2 cells under LPS stimulation (P<0.05, P<0.01). In the 20 μmol·L-1 ZH-13 treatment group, the mRNA expression levels of IL-1β, TNF-α, iNOS, and IL-6 were significantly reduced compared to the model group (P<0.05, P<0.01). In both the low- and high-dose ZH-13 groups, the expression of the inflammatory factor TNF-α and the phosphorylation of c-Jun N-terminal kinase (JNK) in the upstream MAPK pathway were significantly reduced (P<0.05). After stimulation with the JNK agonist anisomycin (Ani), both low- and high-dose ZH-13 treatment groups showed reduced phosphorylation of JNK proteins compared to the Ani-treated group (P<0.01). ConclusionThe sesquiterpene compound ZH-13 from Aquilariae Lignum Resinatum significantly ameliorates LPS-induced neuroinflammatory responses in BV-2 cells by inhibiting excessive JNK phosphorylation and reducing TNF-α expression. These findings elucidate the pharmacological substances and mechanisms underlying the sedative and calming effects of Aquilariae Lignum Resinatum.
2.Discovery and investigation of six polio vaccine derived viruses in Guangzhou City
Min CUI ; Chunhuan ZHANG ; Wei ZHANG ; Jun LIU ; Jialing LI ; Jianxiong XU ; Wenji WANG ; Qing HE ; Lihong NI ; Xuexia YUN ; Huanying ZHENG
Journal of Public Health and Preventive Medicine 2025;36(2):22-25
Objective To understand the surveillance situation of poliovirus in Guangzhou from 2011 to 2024, and to further strengthen polio surveillance and ensure the continued maintenance of a polio-free status. Methods An analysis was conducted on the discovery and investigation results of six cases of vaccine-derived poliovirus (VDPV) detected in Guangzhou. Results A total of 6 VDPV incidents were reported in Guangzhou from 2011 to June 2024, among which 5 incidents were from sewage sample testing in the Liede Sewage Treatment Plant in Guangzhou, all of which were confirmed as VDPV, with 1 for type I, 1 for type II, and 3 for type III. In addition, one confirmed HFMD case was identified as a type VDPV II carrier. No presence of any wild poliovirus (WPV), VDPV cases, or circulating VDPV (cVDPV) was reported. Conclusion Guangzhou City has maintained a high level of vigilance and effectiveness in the monitoring and prevention of polio. Continuously strengthening the construction of the polio monitoring network, optimizing vaccination strategies, and comprehensively improving public health awareness are still the focus of the prevention and control work in the future.
3.The immunomodulatory effect of berbamine on mice with systemic lupus erythematosus.
Hui-Lian WANG ; Jun-Ping ZHAN ; Xi-Yun MIAO ; Qing-Liang MENG ; Jun-Fu MA
Acta Physiologica Sinica 2025;77(3):432-440
Systemic lupus erythematosus (SLE) is an autoimmune disease accompanied by various complications, and the exact etiology remains unclear. Treatments for SLE encompass hormone therapy, plasma exchange and immunoadsorption, and targeted biological therapies. Berbamine (BBM), a cellular immunopotentiator with diverse biological functions, has not been reported to have immunomodulatory and therapeutic effects on SLE. The mice were divided into control group, model group, positive control group, low, medium and high BBM groups. In control group, C57BL/6J wild mice received intraperitoneal injection of saline. In model group, MRL/lpr lupus mice were treated with intraperitoneal injection of saline. In positive control group, MRL/lpr lupus mice received intragastric administration of hydroxychloroquine sulfate tablets [Plaquenil, 150 mg/(kg·d)]. In BBM groups, MRL/lpr lupus mice received intragastric administration of different concentration of BBM respectively [20 mg/(kg·d), 50 mg/(kg·d), 100 mg/(kg·d)]. After 8 weeks of treatment, blood was collected from the retro-orbital venous plexus, and ELISA was used to detect the levels of anti-double-stranded DNA (dsDNA) antibodies, antinuclear antibodies (ANA), and anti-small nuclear ribonucleoprotein/Sm (snRNP/Sm) antibodies. Spleen tissues were collected for analysis of Th1/Th2 ratio by flow cytometry. The RNA and protein of spleen were extracted, and the levels of T-box transcription factor T-bet and GATA3 (GATA binding protein 3) mRNA and protein were detected by qRT-PCR and Western blot. The proliferation of white blood cells in the blood was tested by blood routine test. The histopathological changes of kidneys of each group were detected by HE staining. Compared with the model group, the levels of ANA, anti-dsDNA, and anti-snRNP/Sm antibodies were significantly reduced in the BBM-treated groups. The Th1/Th2 ratio was significantly decreased in the model group, but reversed by BBM. Compared with the control group, T-bet expression was significantly downregulated, while GATA3 expression was significantly upregulated in the model group. After BBM intervention, T-bet expression significantly increased, while GATA3 expression decreased compared with the model group. The number of white blood cells significantly decreased in the model group, and increased in the BBM-treated groups. In the model group, the glomerular mesangial and endothelial cells showed significant hyperplasia, clear thrombus was observed in the dilated capillaries, and inflammatory cells infiltrated in the renal interstitium. In medium and high BBM groups, the infiltration of inflammatory cells and capillary thrombosis were significantly decreased. In conclusion, BBM exhibits certain immunomodulatory effects on SLE and promotes the proliferation of white blood cells.
Animals
;
Lupus Erythematosus, Systemic/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Mice, Inbred MRL lpr
;
Female
;
Benzylisoquinolines/pharmacology*
4.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
5.Pharmacokinetics study of Dayuanyin in normal and febrile rats.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Jun ZHANG ; Xin-Rui LI ; Yu-Qing WANG ; Ming SU ; Xin-Ru SUN ; Hui ZHANG ; Bo-Yang WANG ; Li-Jie WANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(2):527-533
Based on the pharmacokinetics theory, this study investigated the pharmacokinetic characteristics of albiflorin, paeoniflorin, wogonoside, and wogonin in normal and febrile rats and summarized absorption and elimination rules of Dayuanyin in them to provide reference for further development and clinical application of Dayuanyin. Blood samples were taken from the fundus venous plexus of normal and model rats after intragastric administration of Dayuanyin at different time points. The concentration of each substance in blood was determined by ultra performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS) technique at different time points. DAS 2.0, a piece of pharmacokinetics software, was used to calculate the pharmacokinetic parameters of each component. The results show that the 4 components had good linear relationship in their respective ranges, and the results of methodological investigation met the requirements. The pharmacokinetic parameters of C_(max), T_(max), t_(1/2), AUC_(0-t), AUC_(0-∞), and MRT_(0-t) were calculated by the DAS 2.0 non-compartmental model. Compared with those in the normal group, C_(max) and AUC_(0-t) of the 4 components in the model group were significantly increased. There were significant differences in the pharmacokinetic characteristics between the normal and model groups, suggesting that the absorption and elimination of Dayuanyin may be affected by the changes of internal environment of the body in different physiological states.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Fever/metabolism*
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Glucosides/pharmacokinetics*
;
Monoterpenes
6.Sesquiterpenoids from resin of Commiphora myrrha.
Hao HUANG ; Ran WANG ; Ya-Zhu YANG ; Jiao-Jiao YIN ; Yue LIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2025;50(3):702-707
The chemical constituents of Commiphora myrrha was investigated by column chromatography on silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC. Their structures were elucidated by comprehensive spectroscopic methods including UV, IR, MS, NMR, as well as ECD calculation. Seven compounds were isolated from the dichloromethane-soluble fraction of C. myrrha and their structures were identified as(1S,2R,4S,5R,8S)-guaiane-2-hydroxy-7(11),10(15)-dien-6-oxo-12,8-olide(1), commipholide E(2), myrrhterpenoid H(3), myrrhterpenoid I(4), myrrhterpenoid E(5), 2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide(6), 8,12-epoxy-1α,9α-hydroxy-eudesma-7,11-diene-6-dione(7). Compound 1 was a new compound and named myrrhterpenoid P. Compound 7 was isolated from Commiphora genus for the first time. Compounds 2, 5, and 6 significantly inhibited nitric oxide(NO) production in LPS-stimulated RAW264.7 cells, with IC_(50) values of(49.67±4.16),(40.80±1.27),(47.22±0.87) μmol·L~(-1), respectively [indomethacin as the positive control, with IC_(50) value of(63.92±2.60) μmol·L~(-1)].
Commiphora/chemistry*
;
Animals
;
Mice
;
Resins, Plant/chemistry*
;
Sesquiterpenes/isolation & purification*
;
Molecular Structure
;
Nitric Oxide
;
Macrophages/metabolism*
;
RAW 264.7 Cells
;
Drugs, Chinese Herbal/pharmacology*
7.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
8.Improvement effect and mechanism of Wuling San on TGF-β1-induced fibrosis, inflammation, and oxidative stress damage in HK-2 cells.
Jun WU ; Xue-Ning JING ; Fan-Wei MENG ; Xiao-Ni KONG ; Jiu-Wang MIAO ; Cai-Xia ZHANG ; Hai-Lun LI ; Yun HAN
China Journal of Chinese Materia Medica 2025;50(5):1247-1254
This study investigated the effect of Wuling San on transforming growth factor-β1(TGF-β1)-induced fibrosis, inflammation, and oxidative stress in human renal tubular epithelial cells(HK-2) and its mechanism of antioxidant stress injury. HK-2 cells were cultured in vitro and divided into a control group, a TGF-β1 model group, and three treatment groups receiving Wuling San-containing serum at low(2.5%), medium(5.0%), and high(10.0%) doses. TGF-β1 was used to establish the model in all groups except the control group. CCK-8 was used to analyze the effect of different concentrations of Wuling San on the activity of HK-2 cells with or without TGF-β1 stimulation. The expression of key fibrosis molecules, including actin alpha 2(Acta2), collagen type Ⅰ alpha 1 chain(Col1α1), collagen type Ⅲ alpha 1 chain(Col3α1), TIMP metallopeptidase inhibitor 1(Timp1), and fibronectin 1(Fn1), was detected using qPCR. The expression levels of inflammatory cytokines, including tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), and interleukin-4(IL-4), were measured using ELISA kits. Glutathione peroxidase(GSH-Px), malondialdehyde(MDA), catalase(CAT), and superoxide dismutase(SOD) biochemical kits were used to analyze the effect of Wuling San on TGF-β1-induced oxidative stress injury in HK-2 cells, and the expression of nuclear factor E2-related factor 2(Nrf2), heme oxygenase 1(HO-1), and NAD(P)H quinone oxidoreductase 1(NQO1) was analyzed by qPCR and immunofluorescence. The CCK-8 results indicated that the optimal administration concentrations of Wuling San were 2.5%, 5.0%, and 10.0%. Compared with the control group, the TGF-β1 model group showed significantly increased levels of key fibrosis molecules(Acta2, Col1α1, Col3α1, Timp1, and Fn1) and inflammatory cytokines(TNF-α, IL-1β, IL-6, IL-8, and IL-4). In contrast, the Wuling San administration groups were able to dose-dependently inhibit the expression levels of key fibrosis molecules and inflammatory cytokines compared with the TGF-β1 model group. Wuling San significantly increased the activities of GSH-Px, CAT, and SOD enzymes in TGF-β1-stimulated HK-2 cells and significantly inhibited the level of MDA. Furthermore, compared with the control group, the TGF-β1 model group exhibited a significant reduction in the expression of Nrf2, HO-1, and NQO1 genes and proteins. After Wuling San intervention, the expression of Nrf2, HO-1, and NQO1 genes and proteins was significantly increased. Correlation analysis showed that antioxidant stress enzymes(GSH-Px, CAT, and SOD) and Nrf2 signaling were significantly negatively correlated with key fibrosis molecules and inflammatory cytokines in the TGF-β1-stimulated HK-2 cell model. In conclusion, Wuling San can inhibit TGF-β1-induced fibrosis in HK-2 cells by activating the Nrf2 signaling pathway, improving oxidative stress injury, and reducing inflammation.
Humans
;
Oxidative Stress/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Fibrosis/genetics*
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Epithelial Cells/immunology*
;
Inflammation/metabolism*
9.Identification of tissue distribution components and mechanism of antipyretic effect of famous classical formula Dayuanyin.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Rui LI ; Ming SU ; Li-Jie WANG ; Yu-Qing WANG ; Dan-Dan SUN ; Hui ZHANG ; Xin-Jun ZHANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(10):2810-2824
Based on the ultra performance liquid chromatography-quadrupole Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology, combined with related literature, databases, and reference material information, this study qualitatively analyzed the components of Dayuanyin in the tissue of rats after gavage and employed molecular docking technology to predict the rationality of the mechanism behind the antipyretic effect of the in vivo components in Dayuanyin. A total of 21, 26, 20, 21, 14, and 31 prototype components and 3, 16, 3, 7, 5, and 24 metabolites were identified from the heart, liver, spleen, lung, kidney, and hypothalamus of the rats, respectively, and the binding ability of key components and targets was further verified by molecular docking. The results showed that all components had good binding ability with targets. The established UPLC-Q-Exactive Orbitrap-MS could effectively and quickly identify the Dayuanyin components distributed in tissue and preliminarily identify their metabolites. Many components were identified in the hypothalamus, which suggested that the components delivered to the brain should be focused on in the study on Dayuanyin in the treatment of febrile diseases. The molecular docking technology was used to predict the rationality of the mechanism behind its antipyretic effect, which lays the foundation for the clarification of the material basis and action mechanism of Dayuanyin, the development of new preparations, and the prediction of quality markers.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Molecular Docking Simulation
;
Male
;
Antipyretics/metabolism*
;
Rats, Sprague-Dawley
;
Tissue Distribution
;
Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Hypothalamus/metabolism*
10.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals


Result Analysis
Print
Save
E-mail