1.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Effect of Carbohydrate Intake Order on Metabolic Profiles of Endurance Exercise Mice in a High-temperature Environment
Huan-Yu WANG ; Guo-Dong ZHOU ; Ru-Wen WANG ; Jun QIU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1529-1543
ObjectiveThe primary objective of this study was to investigate the effects of carbohydrate intake order on post-exercise recovery and metabolic regulation under heat stress, particularly in models of exercise induced fatigue. Given the increasing significance of optimizing nutritional strategies to support performance in extreme environmental conditions, this study aimed to provide experimental evidence that contributes to a better understanding of how the sequence in which carbohydrates are consumed impacts exercise recovery, metabolic homeostasis, and fatigue alleviation in a high-temperature environment. MethodsA mouse model of exercise-induced fatigue was established under high-temperature (35°C) to simulate heat stress. The subjects were divided into 3 distinct groups based on their carbohydrate intake order: the “mixed intake” group (HOT_MIX), where all macronutrients (carbohydrates, proteins, and fats) were consumed in a balanced ratio; the “carbohydrate-first intake” group (HOT_CHO), where carbohydrates were consumed first followed by other macronutrients; the “carbohydrate-later intake” group (HOT_PRO), where proteins and fats were consumed prior to carbohydrates. Each group underwent a 7 d intervention period with daily intake according to their designated group. Exercise performance was assessed using rotarod retention time test, and biomarkers of muscle damage, such as lactate dehydrogenase (LDH), creatine kinase (CK), lactate (LD), alanine aminotransferase (ALT), and non-esterified fatty acids (NEFA), were measured. Furthermore, targeted metabolomics analyses were conducted to investigate metabolic shifts in response to different dietary strategies, and KEGG pathway enrichment analysis was employed to explore the biological mechanisms underlying these changes. ResultsThe findings demonstrated that the HOT_PRO group exhibited a significantly improved performance in the rotarod test, with a longer retention time compared to both the HOT_MIX and HOT_CHO groups (P<0.05). Additionally, this group showed significantly reduced levels of muscle damage markers such as LDH and CK, indicating that the carbohydrate-later intake strategy helped alleviate exercise-induced muscle injury. Metabolomic profiling of the HOT_PRO group showed marked increases in alanine, creatine, and flavin adenine dinucleotide (FAD), indicating shifts in amino acid metabolism and oxidative metabolism. Conversely, metabolites such as spermidine, cholesterol sulfate, cholesterol, and serine were significantly reduced in the HOT_PRO group, pointing to alterations in lipid and sterol metabolism. Further analysis of the differential metabolites revealed that these changes were primarily associated with key metabolic pathways, including glycine-serine-threonine metabolism, primary bile acid biosynthesis, taurine and hypotaurine metabolism, and steroid hormone biosynthesis. These pathways are essential for energy production, antioxidant defense, and muscle recovery, suggesting that the carbohydrate-later feeding strategy may promote metabolic homeostasis and improve exercise recovery by enhancing these critical metabolic processes. ConclusionThe results of this study support the hypothesis that consuming carbohydrates after proteins and fats during exercise recovery enhances metabolic homeostasis and accelerates recovery under heat stress. This strategy effectively modulates energy, amino acid, and lipid-related pathways, which are crucial for improving endurance performance and mitigating fatigue in high-temperature environments. The findings suggest that carbohydrate-later intake could be a promising nutritional strategy for athletes and individuals exposed to heat during physical activity. Furthermore, the study provides valuable insights into how different nutrient timing strategies can impact exercise recovery and metabolic regulation, paving the way for more personalized and effective nutritional interventions in extreme environmental conditions.
6.Clinical Practice of Coronary Microvascular Disease with the Integrated Approach of Traditional Chinese and Western Medicine
Aolin LI ; Xinnong CHEN ; Lerong YU ; Jun GE ; Wei ZHOU ; Kangzheng GUO ; Junping ZHANG
Journal of Traditional Chinese Medicine 2025;66(16):1662-1667
This paper analyzed the traditional Chinese medicine (TCM) and western medical understanding of coronary microvascular disease (CMVD) from the three dimensions of "disease-syndrome-symptom". In western medicine, by summarizing the suspected diagnosis and understanding of CMVD, it is believed that inflammatory responses and vascular endothelial damage are the key mechanisms of the pathogenesis. From the perspective of TCM, the disease location is at blood, vessels and heart, and the fundamental cause is spleen and kidney depletion, closely realted to phlegm, stasis, toxin, wind and qi. Integrating the understanding of both TCM and western medicine, clinical treatment advocates taking the CMVD pathology as the base, and the TCM understanding of pathogenesis as the main focus. The properties of Chinese herbal medicinals is used as the guidance for medication, and the pharmacological understanding as the assisstance of treatment, with the medical history and the severity of the condition are additionally considered. It is finally proposed that during the acute phase, the methods of nourishing yin and resolving toxins, softening hardness and dissipating masses, dispelling wind and unblocking collaterals should be applied to alleviate the emergency. In the subacute phase, the focus should be on raising and lifting qi promote its movement, with flexible use of medicinals that can unblock yang. In the remission phase, the method of tonifying spleen and fortifying kidney should be used to maintain the stability of the condition.
7.Diagnostic concordance and influencing factors of quantitative flow fraction and fractional flow reserve
Rui-Tao ZHANG ; Peng-Xin XIE ; Zhen-Yu TIAN ; Lin MI ; Ji-Sheng ZHOU ; Ben-Zhen WU ; Li-Yun HE ; Li-Jun GUO
Chinese Journal of Interventional Cardiology 2024;32(9):481-488
Objective This study aimed to explore the diagnostic concordance of fractional flow reserve(FFR)and quantitative flow ratio(QFR)and the characteristics affecting this concordance.Methods Patients with non-acute myocardial infarction admitted to the Department of Cardiology,Peking University Third Hospital between January 2019 and December 2021 were enrolled.The patients were divided into four groups:FFR+/QFR+and FFR-/QFR-,FFR+/QFR-and FFR-/QFR+with FFR or QFR≤0.80 as positive and>0.80 as negative.Using FFR as the gold standard,the diagnostic value of QFR was analyzed,and differences in clinical features and pathological characteristics among the groups were compared.Results A total of 236 patients were included.The mean age was(64.48±9.63)years,and 67.8%were male.All patients had 30%-70%coronary stenosis.The consistency rate of QFR and FFR was 78.0%(n=184),and the Person correlation coefficient was 0.557(P<0.001).Among FFR+patients,the minimum lumen diameter was larger[(1.56±0.34)mm vs.(1.39±0.31)mm,P=0.019],lesion length was shorter[(21.37±11.73)mm vs.(36.86±18.09)mm,P<0.001],and coronary angiography-based index of microcirculartory resistance(AMR)was higher[(277.50±28.87)mmHg·s/m vs.(178.02±49.13)mmHg·s/m,P<0.001]in the disconcordance group.Multivariate regression analysis suggested that AMR[OR 0.93,95%CI 0.88-0.99,P=0.030]and lesion length[OR 1.27,95%CI 1.01-1.60,P=0.045]were independent predictors of disconcordance.In the FFR-group,the lesion length was longer[(33.08±16.05)mm vs.(21.40±13.36)mm,P=0.020],and AMR[(169.66±24.01)mmHg·s/m vs.(265.95±44.78)mmHg·s/m,P<0.001]and low-density lipoprotein-C[1.57(1.10,1.97)mmol/L vs.2.15(1.79,2.74)mmol/L,P=0.031]were lower in the disconcordance group.No statistically significant variables were identified by multivariate regression.Conclusions QFR had high diagnostic value compared with FFR.In the FFR+group,AMR and lesion length may have affected the diagnostic consistency of QFR and FFR.The study provided more evidence for the clinical application of QFR.
8.Study of the transcatheter closure of atrial septal defects in adults guided by echocardiography only
Guo-Jun YU ; Qi TANG ; Zheng LIU ; Tao ZHU ; Abudunaibi·Maimaitiaili ; Qiang HUO ; Wei-Min ZHANG
Chinese Journal of Interventional Cardiology 2024;32(9):496-500
Objective The aim of this study was to investigate the clinical outcome of transcatheter closure of adult's atrial septal defect(ASD)by femoral vein under the guidance of echocardiography.Methods A total of 116 adults diagnosed with ASD and scheduled for transcatheter closure surgery were included in this study.The participants consisted of 17 males and 99 females and were treated at the Department of Cardiac Surgery of The First Affiliated Hospital of Xinjiang Medical University between August 2021 and November 2023.The age of the patients was 18-73(39.7±11.5)years old.Among 116 patients,110 cases had central ASD,6 cases had patent foramen ovale.All patients had normal cardiac function and no other cardiac abnormalities were detected.All the operations were performed with ASD occlusion via the femoral vein under general anesthesia.ASD occlusion was guided by transesophageal or/and transthoracic echocardiography.Results Out of the total 116 cases included in the study,successful ASD occlusion was achieved in 114 cases with the guidance of echo-cardiography.However,in two cases,the procedure was unsuccessful.One patient,who had multiple atrial septal defects,experienced a significant residual shunt of 4 mm after transcatheter closure of ASD.The other patient,who had a large ASD and a small left atrium,also experienced a failed occlusion.In these two cases underwent repair of ASD under complete video-assisted thoracoscopic surgery.The procedural time was 15-40(17.4±5.6)min.The occluders diameter was 14-44(27.3±6.5)mm.No instances of peripheral vascular injury,occluder fall-off,occlusive displacement,obvious residual shunt,or other complications were observed in patients who underwent successful occlusion procedures during and after the operation.All patients were admitted to the general ward after successful extubation inside the operating room.The post-operative hospital stay was(2.1±0.9)days.Conclusions The transcatheter closure of ASD through femoral vein puncture,guided by echocardiography,is a safe and feasible procedure for adult patients.This minimally invasive approach poses no risk of radiation injury.
9.Safety and efficacy of domestically produced novel bioabsorbable vascular scaff old in the treatment of complex coronary artery lesions for 3 years
Deng-Shuang ZHOU ; Qiong YOU ; Hai-Liang MO ; Zi-Jun WU ; Yu-Biao LIN ; Lu-Jun CHEN ; Jun-Yu FAN ; Yong-Jian LIN ; Rui-Sheng ZHANG ; Pei-Shan WAN ; Wei-Guo ZHOU ; Keng WU
Chinese Journal of Interventional Cardiology 2024;32(9):509-515
Objective To investigate the safety and efficacy of novel bioabsorbable vascular scaffold(BVS)in the treatment of patients with complex coronary artery disease.Methods This was a retrospective,matched,single-center observational study.45 patients with coronary atherosclerotic cardiopathy received BVS treatment in the cardiovascular medicine department Department of the Affiliated Hospital of Guangdong Medical University from June 2020 to June 2021(BVS),and 45 patients treated with drug-eluting stents(DES)group were selected according to matching study requirements during the same period.Baseline,surgical,and follow-up data were compared between the two groups to evaluate safety and efficacy.The main measures of safety were:surgical time,intraoperative adverse events,etc.,and the end point of efficacy was target lesion failure(TLF),including cardiac death,target vessel myocardial infarction,and ischa-driven target lesion revascularization.Results A total of 90 patients were enrolled in this study,all of whom were followed up for at least 3 years.There were 20 cases of bifurcation lesions and 25 cases of diffuse long lesions in the two groups,and 50 cases of imaging were reviewed among the 90 patients.The proportion of stable coronary heart disease,history of diabetes,history of hypertension,history of smoking,pre-dilated balloon pressure and postoperative diastolic blood pressure in BVS group was higher than that in DES group,and the proportion of family history was lower than that in DES group(all P<0.05).There were no statistically significant differences in the rates of cardiac death,target vessel myocardial infarction,and ischemia-driven revascularization of target lesions between the two groups(all P>0.05).Binary Logistic regression model analysis showed that the diameter stenosis ratio of target lesions was an independent risk factor for intrastent restenosis(OR 2.786,95%CI 1.096-7.081,P=0.031).Conclusions Compared with traditional DES,BVS implantation has consistent safety and efficacy in the treatment of complex coronary artery disease within 3 years.The diameter stenosis ratio of target lesions was an independent risk factor for intrastent restenosis.
10.Porcine SIRT5 promotes replication of foot and mouth disease virus type O in PK-15 cells
Guo-Hui CHEN ; Xi-Juan SHI ; Xin-Tian BIE ; Xing YANG ; Si-Yue ZHAO ; Da-Jun ZHANG ; Deng-Shuai ZHAO ; Wen-Qian YAN ; Ling-Ling CHEN ; Mei-Yu ZHAO ; Lu HE ; Hai-Xue ZHENG ; Xia LIU ; Ke-Shan ZHANG
Chinese Journal of Zoonoses 2024;40(5):421-429
The effect of porcine SIRT5 on replication of foot and mouth disease virus type O(FMDV-O)and the underlying regulatory mechanism were investigated.Western blot and RT-qPCR analyses were employed to monitor expression of endoge-nous SIRT5 in PK-15 cells infected with FMDV-O.Three pairs of SIRT5-specific siRNAs were synthesized.Changes to SIRT5 and FMDV-O protein and transcript levels,in addition to virus copy numbers,were measured by western blot and RT-qPCR analyses.PK-15 cells were transfected with a eukaryotic SIRT5 expression plasmid.Western blot and RT-qPCR analyses were used to explore the impact of SIRT5 overexpression on FMDV-O replication.Meanwhile,RT-qPCR analysis was used to detect the effect of SIRT5 overexpression on the mRNA expression levels of type I interferon-stimulated genes induced by SeV and FMDV-O.The results showed that expression of SIRT5 was up-regulated in PK-15 cells infected with FMDV-O and siRNA interfered with SIRT5 to inhibit FMDV-O replication.SIRT5 overexpression promoted FMDV-O replication.SIRT5 over-expression decreased mRNA expression levels of interferon-stimulated genes induced by SeV and FMDV-O.These results suggest that FMDV-O infection stimulated expression of SIRT5 in PK-15 cells,while SIRT5 promoted FMDV-O rep-lication by inhibiting production of type I interferon-stimula-ted genes.These findings provide a reference to further ex-plore the mechanism underlying the ability of porcine SIRT5 to promote FMDV-O replication.

Result Analysis
Print
Save
E-mail