1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
3.Pharmacological actions of the bioactive compounds of Epimedium on the male reproductive system: current status and future perspective.
Song-Po LIU ; Yun-Fei LI ; Dan ZHANG ; Chun-Yang LI ; Xiao-Fang DAI ; Dong-Feng LAN ; Ji CAI ; He ZHOU ; Tao SONG ; Yan-Yu ZHAO ; Zhi-Xu HE ; Jun TAN ; Ji-Dong ZHANG
Asian Journal of Andrology 2025;27(1):20-29
Compounds isolated from Epimedium include the total flavonoids of Epimedium , icariin, and its metabolites (icaritin, icariside I, and icariside II), which have similar molecular structures. Modern pharmacological research and clinical practice have proved that Epimedium and its active components have a wide range of pharmacological effects, especially in improving sexual function, hormone regulation, anti-osteoporosis, immune function regulation, anti-oxidation, and anti-tumor activity. To date, we still need a comprehensive source of knowledge about the pharmacological effects of Epimedium and its bioactive compounds on the male reproductive system. However, their actions in other tissues have been reviewed in recent years. This review critically focuses on the Epimedium , its bioactive compounds, and the biochemical and molecular mechanisms that modulate vital pathways associated with the male reproductive system. Such intrinsic knowledge will significantly further studies on the Epimedium and its bioactive compounds that protect the male reproductive system and provide some guidances for clinical treatment of related male reproductive disorders.
Male
;
Epimedium/chemistry*
;
Humans
;
Genitalia, Male/drug effects*
;
Flavonoids/therapeutic use*
;
Animals
4.Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment.
Shihua ZHANG ; Jianmin GUO ; Yuting HE ; Zhi'ang SU ; Yao FENG ; Lan ZHANG ; Zou JUN ; Xiquan WENG ; Yu YUAN
Journal of Zhejiang University. Science. B 2025;26(2):107-123
Bone is a highly calcified and vascularized tissue. The vascular system plays a vital role in supporting bone growth and repair, such as the provision of nutrients, growth factors, and metabolic waste transfer. Moreover, the additional functions of the bone vasculature, such as the secretion of various factors and the regulation of bone-related signaling pathways, are essential for maintaining bone health. In the bone microenvironment, bone tissue cells play a critical role in regulating angiogenesis, including osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoclasts. Osteogenesis and bone angiogenesis are closely linked. The decrease in osteogenesis and bone angiogenesis caused by aging leads to osteoporosis. Long noncoding RNAs (lncRNAs) are involved in various physiological processes, including osteogenesis and angiogenesis. Recent studies have shown that lncRNAs could mediate the crosstalk between angiogenesis and osteogenesis. However, the mechanism by which lncRNAs regulate angiogenesis‒osteogenesis crosstalk remains unclear. In this review, we describe in detail the ways in which lncRNAs regulate the crosstalk between osteogenesis and angiogenesis to promote bone health, aiming to provide new directions for the study of the mechanism by which lncRNAs regulate bone metabolism.
RNA, Long Noncoding/physiology*
;
Osteogenesis/physiology*
;
Humans
;
Neovascularization, Physiologic/genetics*
;
Bone and Bones/metabolism*
;
Animals
;
Mesenchymal Stem Cells
;
Signal Transduction
;
Osteoblasts
;
Osteoclasts
;
Angiogenesis
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
7.Epidemiology and management patterns of chronic thromboembolic pulmonary hypertension in China.
Wanmu XIE ; Yongpei YU ; Qiang HUANG ; Xiaoyan YAN ; Yuanhua YANG ; Changming XIONG ; Zhihong LIU ; Jun WAN ; Sugang GONG ; Lan WANG ; Cheng HONG ; Chenghong LI ; Jean-François RICHARD ; Yanhua WU ; Jun ZOU ; Chen YAO ; Zhenguo ZHAI
Chinese Medical Journal 2025;138(8):1000-1002
8.Medication rules and mechanisms of treating chronic renal failure by Jinling medical school based on data mining, network pharmacology, and experimental validation.
Jin-Long WANG ; Wei WU ; Yi-Gang WAN ; Qi-Jun FANG ; Yu WANG ; Ya-Jing LI ; Fee-Lan CHONG ; Sen-Lin MU ; Chu-Bo HUANG ; Huang HUANG
China Journal of Chinese Materia Medica 2025;50(6):1637-1649
This study aims to explore the medication rules and mechanisms of treating chronic renal failure(CRF) by Jinling medical school based on data mining, network pharmacology, and experimental validation systematically and deeply. Firstly, the study selected the papers published by the inherited clinicians in Jinling medical school in Chinese journals using the subject headings named "traditional Chinese medicine(TCM) + chronic renal failure", "TCM + chronic renal inefficiency", or "TCM + consumptive disease" in China National Knowledge Infrastructure, Wanfang, and VIP Chinese Science and Technology Periodical Database and screened TCM formulas for treating CRF according to inclusion and exclusion criteria. The study analyzed the frequency of use of single TCM and the four properties, five tastes, channel tropism, and efficacy of TCM used with high frequency and performed association rule and clustering analysis, respectively. As a result, a total of 215 TCM formulas and 235 different single TCM were screened, respectively. The TCM used with high frequency included Astragali Radix, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Poria, and Atractylodis Macrocephalae Rhizoma(top 5). The single TCM characterized by "cold properties, sweet flavor, and restoring spleen channel" and the TCM with the efficacy of tonifying deficiency had the highest frequency of use, respectively. Then, the TCM with the rules of "blood-activating and stasis-removing" and "diuretic and dampness-penetrating" appeared. In addition, the core combination of TCM [(Hexin Formula, HXF)] included "Astragali Radix, Rhei Radix et Rhizoma, Poria, Salviae Miltiorrhizae Radix, and Angelicae Sinensis Radix". The network pharmacology analysis showed that HXF had 91 active compounds and 250 corresponding protein targets including prostaglandin-endoperoxide synthase 2(PTGS2), PTGS1, sodium voltage-gated channel alpha subunit 5(SCN5A), cholinergic receptor muscarinic 1(CHRM1), and heat shock protein 90 alpha family class A member 1(HSP90AA1)(top 5). Gene Ontology(GO) function analysis revealed that the core targets of HXF predominantly affected biological processes, cellular components, and molecular functions such as positive regulation of transcription by ribonucleic acid polymerase Ⅱ and DNA template transcription, formation of cytosol, nucleus, and plasma membrane, and identical protein binding and enzyme binding. Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis revealed that CRF-related genes were involved in a variety of signaling pathways and cellular metabolic pathways, primarily involving "phosphatidylinositol 3-kinase(PI3K)-protein kinase B(Akt) pathway" and "advanced glycation end products-receptor for advanced glycation end products". Molecular docking results showed that the active components in HXF such as isomucronulatol 7-O-glucoside, betulinic acid, sitosterol, and przewaquinone B might be crucial in the treatment of CRF. Finally, a modified rat model with renal failure induced by adenine was used, and the in vivo experimental confirmation was performed based on the above-mentioned predictions. The results verify that HXF can regulate mitochondrial autophagy in the kidneys and the PI3K-Akt-mammalian target of rapamycin(mTOR) signaling pathway activation at upstream, so as to alleviate renal tubulointerstitial fibrosis and then delay the progression of CRF.
Data Mining
;
Drugs, Chinese Herbal/chemistry*
;
Network Pharmacology
;
Humans
;
Kidney Failure, Chronic/metabolism*
;
Medicine, Chinese Traditional
;
China
9.Factors and Their Impact on Treatment Effect of Acupuncture in Different Outcomes: A Meta-Regression of Acupuncture Randomized Controlled Trials.
Wen-Cui XIU ; Wei-Juan GANG ; Qi ZHOU ; Lan-Jun SHI ; Xiang-Yu HU ; Tian-Yu MING ; Zhen LUO ; Yu-Qing ZHANG ; Xiang-Hong JING
Chinese journal of integrative medicine 2024;30(3):260-266
BACKGROUND:
The effects of acupuncture have varied in different randomized controlled trials (RCTs), and there are many factors that influence treatment effect of acupuncture in different outcomes, with conflicting results.
OBJECTIVE:
To identify factors and their impact on the treatment effect of acupuncture in different outcomes.
METHODS:
Acupuncture RCTs were searched from 7 databases including Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Wanfang Database, VIP Database, and China Biology Medicine disc between January 1st, 2015 and December 31st, 2019. Eligible studies must compare acupuncture to no acupuncture, sham acupuncture, or waiting lists, and report at least 1 patient-important outcome. A multi-level meta-regression was conducted using a 3-level robust mixed model and univariate analyses were performed for all independent variables, even those excluded from the multivariable model due to collinearities. We used thresholds of 0.2 and 0.4 for the difference of standardized mean differences (SMDs), categorising them as small (<0.2), moderate (0.2-0.4), or large (>0.4) effects.
RESULTS:
The pain construct analysis involved 211 effect estimates from 153 studies and 14 independent variables. High-frequency acupuncture treatment sessions produced larger effects compared to low-frequency sessions [large magnitude, the difference of adjusted SMDs 0.46, 95% confidence interval (CI) 0.07 to 0.84; P=0.02]. The non-pain symptoms construct analysis comprised 323 effect estimates from 231 studies and 15 independent variables. Penetrating acupuncture showed moderately larger effects when compared to non-penetrating acupuncture (0.30, 95% CI 0.06 to 0.53; P=0.01). The function construct analysis included 495 effect estimates from 274 studies and 14 independent variables. Penetrating acupuncture and the flexible acupuncture regimen showed moderately larger effects, compared to non-penetrating acupuncture and fixed regimen, respectively (0.40, 95% CI 0 to 0.80; P=0.05; 0.29, 95% CI 0.06 to 0.53; P=0.01).
CONCLUSIONS
High-frequency acupuncture sessions appear to be a more effective approach to managing painful symptoms. Penetrating acupuncture demonstrated greater effect in relieving non-painful symptoms. Both penetrating acupuncture type and flexible acupuncture regimen were linked to significant treatment effects in function outcomes. Future studies should consider the factors that are significantly associated with the effects of acupuncture in patient-important outcomes.
Humans
;
Randomized Controlled Trials as Topic
;
Acupuncture Therapy/methods*
;
Pain
;
Pain Management
;
China
10.Discovery of the targets and lead compounds of traditional Chinese medicine based on the molecular trajectory of diabetes evolution
Yu ZHANG ; Jiang-lan LONG ; Ai-ting WANG ; Hao LÜ ; Ke-jun DENG ; Hao LIN ; Dan YAN
Acta Pharmaceutica Sinica 2024;59(8):2199-2204
Exploring the action targets (groups) of traditional Chinese medicine (TCM) is an important proposition to promote the innovation and development of TCM, but it has attracted a lot of attention as to whether it is related to the efficacy or the disease. Our team found that the metabolomic signature molecules in the development of diabetes mellitus (DM) were significantly associated with the clinical efficacy of Yuquan Pill through a large clinical sample study. Taking this as a clue, our team intends to expand the information on the omics features of DM development, and discover the key targets (groups) and their lead compounds for the hypoglycemic effect of Yuquan Pill. The project includes: ① Based on the retrospective clinical trials, using omics technology integrated with generative artificial intelligence, mining the characteristic information of proteome and microbiome, forming driving factors together with metabolome characteristic molecules, and characterizing the molecular trajectories of diabetes evolution and their interference by Yuquan Pill; ② Taking the evolving molecular trajectories as a link and pointer, using anthropomorphic modeling and molecular biology techniques such as chemical proteomics to discover the key targets (groups) of Yuquan Pill's hypoglycemic effect, with the prospective clinical samples for validation; ③ Evaluate the overall response of key targets (groups) using graph neural network technology, and search for drug-derived/endogenous lead compounds with proven clinical pathologies and clear mechanisms of action, so as to provide a new paradigm and technology for the discovery of complex active ingredient targets (groups) of TCM that are related to their clinical efficacy, as well as for the discovery of innovative medicines.

Result Analysis
Print
Save
E-mail