1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Study on surface microcirculation sensitization of acupuncture points related to cold coagulation and stasis syndrome in primary dysmenorrhea
Xuxin LI ; Xuesong WANG ; Miao LIN ; Mingjian ZHANG ; Yuanbo GAO ; Xifen ZHANG ; Hao CHEN ; Haiping LI ; Xiaojun ZHENG ; Xisheng FAN ; Jun LIU ; Juncha ZHANG ; Yanfen SHE
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):253-269
Objective:
To assess the dynamic changes of microcirculation at acupoints in patients with primary dysmenorrhea and cold congelation and blood stasis syndrome using laser speckle blood flow imaging.
Methods:
Patients with primary dysmenorrhea and cold coagulation and blood stasis syndrome (primary dysmenorrhea group, n=53) and healthy female college students(control group, n=57) who met the inclusion and exclusion criteria from October 2020 to July 2022 were enrolled at Hebei University of Chinese Medicine. On the premenstrual and first day of menstruation, a laser speckle blood flow imaging system was used to measure the microcirculation blood flow perfusion on the surface of acupoints related to the conception, thoroughfare, and governor vessels, and stomach, spleen, and bladder meridians in the abdomen and lumbosacral regions. The dynamic changes in microcirculation were calculated based on the difference in average blood flow perfusion at each acupoint before and after menstruation. Receiver operating curve (ROC) analysis was used to analyze the diagnostic efficacy of dynamic changes in microcirculation on the surface of each acupoint. The microcirculation sensitization rate of acupoints was calculated.
Results:
Compared with the control group, the dynamic changes in microcirculation at the following acupoints in the primary dysmenorrhea group were increased (P<0.05): conception vessel (Yinjiao[CV7], Qihai[CV6], Shimen[CV5], Guanyuan[CV4]); left thoroughfare vessel (left Huangshu[KI16], left Zhongzhu[KI15], left Siman[KI14], left Qixue[KI13], left Dahe[KI12], left Henggu[KI11]); left stomach meridian (left Tianshu[ST25], left Wailing[ST26], left Qichong[ST30]); left spleen meridian (left Daheng[SP15], left Fujie[SP14]); right thoroughfare vessel (right Huangshu[KI16], right Zhongzhu[KI15], right Siman[KI14], right Qixue[KI13], right Dahe[KI12], right Henggu[KI11]); right stomach meridian (right Wailing[ST26], right Daju[ST27], right Shuidao[ST28], right Guilai[ST29], right Qichong[ST30]); and right spleen meridian (right Fujie[SP14]). The area under the ROC curve of conception vessel (Yinjiao[CV7], Qihai[CV6], Shimen[CV5], Guanyuan[CV4]), thoroughfare vessel (right Siman[KI14], left Huangshu[KI16], right Qixue[KI13], right Zhongzhu[KI15], right Dahe[KI12], left Zhongzhu[KI15], left Siman[KI14], right Huangshu[KI16], left Qixue[KI13], right Henggu[KI11], left Henggu[KI11], left Dahe[KI12]); stomach meridian (left Tianshu[ST25], right Guilai[ST29], left Wailing[ST26], right Shuidao[ST28], right Daju[ST27], right Wailing[ST26], right Qichong[ST30], left Qichong[ST30]), and spleen meridian (left Daheng[SP15], left Fujie[SP14], right Fujie[SP14]) was 0.610-0.682 (P<0.05). Compared with the control group, the sensitization rate of some acupoints in the primary dysmenorrhea group increased (P<0.05).
Conclusion
With the onset of menstruation, the blood flow perfusion of some acupoints in the abdomen (thoroughfare, and conception vessels, and stomach and spleen meridians) of patients with primary dysmenorrhea and cold blood coagulation and blood stasis syndrome increased, and the status of acupoints changed from a resting state to an active state. These acupoints are sensitive in patients with primary dysmenorrhea and cold blood coagulation and blood stasis syndrome and have a certain diagnostic efficacy, providing a basis for further analyzing the efficacy and mechanism of acupuncture and moxibustion to treat primary dysmenorrhea with cold blood coagulation and blood stasis syndrome.
3.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
4.Analysis of the frequency of X-ray diagnostic examinations and CT radiation doses in public hospitals of a district in Ningbo City, China
Shuxia HAO ; Mengxue LI ; Yong WANG ; Shengnan FAN ; Jingguo ZHANG ; Xueying WANG ; Jun DENG ; Quanfu SUN
Chinese Journal of Radiological Health 2025;34(3):324-330
Objective To systematically analyze the medical radiation exposure levels in a district of Ningbo City and to provide a scientific basis for the reasonable and effective control of medical radiation exposure. Methods Based on the radiological diagnosis frequency and dose information system, basic medical radiation exposure data were collected, such as radiation doses received by patients in various X-ray diagnostic examinations, from all 13 public medical institutions in a district of Ningbo City from January 1 to December 31, 2020. The data were analyzed for the percentage and collective effective dose of various diagnostic examinations, the distribution of examinations by sex and age, and the number of patients undergoing two or more examinations and their cumulative doses within multiple time intervals. Results Among medical X-ray diagnostic examinations in the district, the percentages of CT examination and routine photography examination were 50.88% and 47.93%, respectively, and the collective effective dose of CT examination accounted for 97.75%. By age and sex, the frequency of examination was the highest in the age group of 45-54 years, and the frequency of examination in the male was higher than that in the female before age 55. The annual effective dose for two patients exceeded 100 mSv. Conclusion In this study, CT examination accounted for up to 50.88% of all medical X-ray diagnostic examinations, and contributed 97.75% of the collective effective dose, highlighting the need for particular attention to the justification of medical radiation exposure from CT.
5.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
6.Effect of high fat diet intake on pharmacokinetics of metronidazole tablets in healthy Chinese volunteers
Na ZHAO ; Cai-Hui GUO ; Ya-Li LIU ; Hao-Jing SONG ; Ben SHI ; Yi-Ting HU ; Cai-Yun JIA ; Zhan-Jun DONG
The Chinese Journal of Clinical Pharmacology 2024;40(1):102-106
Objective To evaluate the effects of high-fat diet on the pharmacokinetics of metronidazole in Chinese healthy adult subjects.Methods This program is designed according to a single-center,randomized,open,single-dose trial.Forty-seven healthy subjects were assigned to receive single dose of metronidazole tablets 200 mg in either fasting and high-fat diet state,and blood samples were taken at different time points,respectively.The concentrations of metronidazole in plasma were determined by high performance liquid chromatography-mass spectromentry.Results The main pharmacokinetic parameters of metronidazole in fasting state and high-fat diet state were as follows:Cmax were(4 799.13±1 195.32)and(4 044.17±773.98)ng·mL-1;tmax were 1.00 and 2.25 h;t1/2 were(9.11±1.73)and(9.37±1.79)h;AUC0_t were(5.59±1.19)x 104 and(5.51±1.18)x 104 ng·mL-1·h;AUC0_∞ were(5.79±1.33)x 104 and(5.74±1.32)× 104 ng·mL-1·h.Compared to the fasting state,the tmaxof the drug taken after a high fat diet was delayed by 1.25 h(P<0.01),Cmax,AUC0_t,AUC0-∞ were less or decreased in different degrees,but the effects were small(all P>0.05).Conclusion High-fat diet has little effects on the pharmacokinetic parameters of metronidazole,which does not significantly change the degree of drug absorption,but can significantly delay the time to peak.
7.Bioequivalence test of metronidazole tablets in healthy human in China
Xiu-Qing PENG ; Cai-Hui GUO ; Ya-Li LIU ; Na ZHAO ; Hao-Jing SONG ; Wan-Jun BAI ; Zhan-Jun DONG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1943-1947
Objective To evaluate the bioequivalence of metronidazole tablet and reference formulation in Chinese healthy subjects.Methods A single-dose,two-cycle,randomized,open,self-crossover trial was designed with 48 healthy subjects randomly assigned to fasting or postprandial group.For each group,a single oral dose of metronidazole tablet(200 mg)or a reference preparation(200 mg)per cycle were enrolled.The concentration of metronidazole in plasma was measured by high performance liquid chromatography tandem mass spectrometry(HPLC-MS/MS).The non-compartmental model was applied to calculate the pharmacokinetic parameters for bioequivalence analysis via SAS 9.3 software.Results The main pharmacokinetic parameters of test and reference metronidazole tablets in the fasting group were as follows,the Cmax were(4 855.00±1 383.97)and(4 799.13±1 195.32)ng·h·mL-1;the AUC0-t were(54 834.68±12 697.88)and(55 931.35±11 935.28)ng·h·mL-1;the AUC0-∞ were(56 778.09±13 937.76)and(57 922.83±13 260.54)ng·h·mL-1;the Tmax were respectively 1.17 and 1.00 h;t1/2 were(8.99±1.76)and(9.11±1.73)h,respectively.The ratio of the geometric mean and its 90%confidence intervals(CI)of Cmax,AUC0-t and AUC0-∞ were all within the equivalent interval of 80.00%-125.00%.As for postprandial conditions,the main pharmacokinetic parameters of test and reference metronidazole tablets were as follows,the Cmax were(4 057.08±655.08)and(4 044.17±773.98)ng·h·mL-1;the AUC0-t were(55 956.42±12 228.12)and(55 121.04±11 784.55)ng·h·mL-1;the AUC0-∞ were(58 212.83±13 820.00)and(57 350.38±13 229.46)ng·h·mL-1;the Tmax were 2.50 and 2.25 h;the t1/2 were(9.37±1.68)and(9.37±1.79)h,respectively.The ratio of the geometric mean and 90%CI of Cmax,AUC0-t and AUC0-∞ were all within the equivalent interval of 80.00%-125.00%.Conclusion The two preparations were bioequivalent to Chinese healthy adult volunteers under both fasting and fed conditions.
8.Effects of melezitose on ulcerative colitis mice
Zhang-Hao CHEN ; Shuang GAO ; Jin-Fa LI ; Zhen GAN ; Jun-Min CHANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2083-2087
Objective To investigate the mechanism of melezitose(MELE)on ulcerative colitis(UC)by structing a mouse model of ulcerative colitis(UC)induced by dextran sodium sulfate(DSS).Methods Forty-eight SPF grade male c57BL/6 mice were randomly divided into normal group(0.9%NaCl),model group(0.9%NaCl),control group(100 mg·kg-1 mesalazine)and experimental-L,-M,-H groups(20,40,80 mg·kg-1 melezitose solution).The UC model was induced by giving 3%DSS solution instead of drinking water,and the disease activity index(DAI)was evaluated.Serum levels of interleukin-1 β(IL-113),IL-6,IL-10 and tumor necrosis factor α(TNF-α)were detected by enzyme linked immunosorbent assay.The expression levels of major histocompatibility complex Ⅱ(MHC Ⅱ)and cluster of differentiation 4 receptors(CD4)protein were detected by Western blot.Results The levels of IL-1 β in serum in the experimental-M,-H groups,model group and normal group were(82.15±13.66),(75.56±11.07),(118.20±19.31)and(23.47±4.72)pg·mL-1;serum IL-6 levels were(71.54±16.48),(58.57±15.62),(140.60±5.76)and(30.33±4.15)pg·mL-1;serum IL-10 levels were(48.64±5.60),(52.65±7.99),(27.10±4.91)and(61.90±10.44)pg·mL-1;serum TNF-α levels were(70.33±8.51),(66.55±8.12),(90.88±4.90)and(34.18±4.15)pg·mL-1;the relative expression levels of MHC Ⅱ protein were 0.34±0.04,0.15±0.06,0.08±0.05 and 0.53±0.59;the relative expression levels of CD4 protein were 0.79±0.08,0.92±0.12,0.99±0.11 and 0.54±0.14,respectively.Compared with the model group,the above indexes in the experimental-M,-H groups showed statistically significant differences(P<0.05,P<0.01).Conclusion Melezitose could effectively improve the symptoms of UC mice;the mechanism may be through down-regulating MHC Ⅱ protein and up-regulating CD4 protein to activate T cell signal pathway to play an anti-inflammatory effect.
9.Investigation and analysis of external exposure levels of radiation workers in selected veterinary clinics in China, 2022
Shuxia HAO ; Haitao YU ; Mengxue LI ; Shengnan FAN ; Tuo WANG ; Jingguo ZHANG ; Jun DENG
Chinese Journal of Radiological Health 2024;33(6):649-653
Objective With the increase in pet-owning households in China, veterinary clinics have increased at an annual rate of 19.86%. However, the management blind area that may exist in multi-department supervision has led to a significantly worse working environment of radiation workers in veterinary clinics than that of medical institutions. The purpose of this study was to understand the levels of occupational external exposure of radiation workers in veterinary clinics in China, analyze the occupational risks faced by radiation workers in veterinary clinics, contribute to the protection of the occupational health of radiation workers, and provide data and scientific basis for the formulation of national relevant regulations and standards. Methods The individual dose monitoring data of radiation workers in selected veterinary clinics in 2022 were obtained from the National Individual Dose Registration System. Results This study involved 1868 radiation workers from
10.Autologous platelet-rich plasma treatment for infected deep second-degree burn wounds: a case report
Hao HUANG ; Jun HUANG ; Qun LIANG ; Jian LIU ; Ting LI ; Yang ZHAO
Chinese Journal of Blood Transfusion 2024;37(1):95-100
【Objective】 To explore the feasibility of using autologous platelet-rich plasma (PRP) in the treatment of deep second-degree burns complicated with wound infection. 【Methods】 A retrospective analysis was conducted on the treatment process of a patient with deep second-degree burns and bacterial infection on the wound using autologous PRP. Clinical treatment highlights and outpatient follow-up were combined to discuss the feasibility and clinical effects of using autologous PRP in the treatment of burn wounds complicated with infection. 【Results】 The patient had a deep second-degree burn with a coagulase-negative Staphylococcus infection on the left lower limb. After one week of conventional wound dressing and antibiotic treatment, the patient's body temperature returned to normal. However, wound healing was slow and yellow secretion persisted. Subsequently, the burn wound was treated combined with topical autologous PRP. The wound pain score gradually decreased from 8 to 1. After 2 weeks, the bacterial culture of the wound secretion was negative, and the wound healed completely after 18 days. The wound scar score decreased from 5 to 2 at 1, 3 and 6 months after PRP treatment, and no obvious scar formation was observed. In the course of PRP treatment, there were no adverse reactions such as increased wound inflammation, abnormal blood routine and liver and kidney function test results. 【Conclusion】 For deep second-degree burn patients with localized wound bacterial infections who either refuse surgery or are not suitable for surgery, autologous PRP is a safer alternative that can effectively promote tissue regeneration and wound healing. The patient in this case achieved a curative effect in a short period of time.


Result Analysis
Print
Save
E-mail