1.miR-27a-3p promotes the proliferation of human hypertrophic scar fibroblasts by regulating mitogen-activated protein kinase signaling pathway
Jun LI ; Jingjing GONG ; Guobin SUN ; Rui GUO ; Yang DING ; Lijuan QIANG ; Xiaoli ZHANG ; Zhanhai FANG
Chinese Journal of Tissue Engineering Research 2025;29(8):1609-1617
BACKGROUND:Multiple studies have confirmed that mitogen-activated protein kinase(MAPK)signaling pathway is involved in cell proliferation,and microRNA(miR)is involved in the occurrence and development of hypertrophic scars.Therefore,the role of miR-27a-3p and MAPK signaling pathways in pathological scar formation has been further explored. OBJECTIVE:To explore the effect of miR-27a-3p on the proliferation of human hypertrophic scar fibroblasts through the MAPK signaling pathway. METHODS:The primary fibroblasts were isolated and collected from the skin samples.The primary fibroblasts were observed by inverted microscope and verified by immunofluorescence.The relative expression level of miR-27a-3p in tissues was detected by qRT-PCR.The target genes of hsa-miR-27a-3p were predicted using the database,and then the predicted target genes were enriched by gene ontology function analysis and biological pathway enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes.There were seven groups:blank control,negative control,miR-27a-3p mimic,miR-27a-3p inhibitor,miR-27a-3p mimic+p38 MAPK inhibitor,miR-27a-3p mimic+extracellular regulated protein kinase inhibitor,miR-27a-3p mimic+c-Jun N-terminal kinase inhibitor.Western blot was used to detect the levels of extracellular regulated protein kinase,c-Jun N-terminal kinase inhibitor.and p38 kinase and their phosphorylation levels.Cell counting kit-8 and EdU were used to detect cell proliferation. RESULTS AND CONCLUSION:Compared with normal skin fibroblasts,hypertrophic scar fibroblasts had stronger proliferative activity(P<0.05)and faster proliferation level(P<0.001).Compared with normal skin,miR-27a-3p was highly expressed in hypertrophic scars(P<0.001).Compared with the negative control group,overexpression of miR-27a-3p could promote cell proliferation activity(P<0.001)and proliferation levels(P<0.001).Compared with the negative control group,knockdown of miR-27a-3p could inhibit the proliferation activity(P<0.05)and proliferation levels(P<0.001).Compared with the negative control group,overexpression of miR-27a-3p promoted the phosphorylated levels of extracellular regulated protein kinase,c-Jun N-terminal kinase,and p38 mitogen-activated protein kinase(P<0.05).Compared with the negative control group,knockdown of miR-27a-3p inhibited the phosphorylated levels of extracellular regulated protein kinase,c-Jun N-terminal kinase,and p38 MAPK(P<0.05).Compared with the miR-27a-3p mimic group,specific inhibitors of extracellular regulated protein kinase,c-Jun N-terminal kinase,and p38 MAPK reversed the effects of miR-27a-3p on the proliferative activity(P<0.01)and proliferation level(P<0.001)of fibroblasts.To conclude,these results suggest that miR-27a-3p promotes the proliferation of human hypertrophic scar fibroblasts by activating the MAPK signaling pathway.
2.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
3.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
4.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
5.Study progress of novel biomarkers for early prediction of polymyxin-associated acute kidney injury
Ge YANG ; Jun YANG ; Fang LIU ; Yongchuan CHEN ; Hong ZHANG
China Pharmacy 2025;36(2):251-256
Polymyxin is an essential antibiotic for treating multidrug-resistant Gram-negative bacterial infections; however, its significant nephrotoxicity greatly limits its clinical application. To enhance its safety and improve patient outcomes, the study of novel biomarkers for the early prediction of polymyxin-associated acute kidney injury is critically important. Novel biomarkers, such as cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, N-acetyl-β-glucosaminidase, β2- microglobulin, have shown obvious advantages in the early prediction of polymyxin-associated acute kidney injury. Compared to traditional biomarkers, these biomarkers can provide sensitive and specific diagnostic information in the early stages of kidney injury, helping to optimize individualized treatment plans and reduce clinical risks. However, the high cost of detection and complex operation still limit their clinical promotion. Future research should focus on optimizing the detection technology of new biomarkers, simplifying the operation process and reducing costs, while conducting multi-center, large-scale randomized controlled trials to systematically evaluate the sensitivity and specificity of various novel biomarkers, in order to promote their application in the field of prediction of renal injury in clinical practice.
6.Study progress of novel biomarkers for early prediction of polymyxin-associated acute kidney injury
Ge YANG ; Jun YANG ; Fang LIU ; Yongchuan CHEN ; Hong ZHANG
China Pharmacy 2025;36(2):251-256
Polymyxin is an essential antibiotic for treating multidrug-resistant Gram-negative bacterial infections; however, its significant nephrotoxicity greatly limits its clinical application. To enhance its safety and improve patient outcomes, the study of novel biomarkers for the early prediction of polymyxin-associated acute kidney injury is critically important. Novel biomarkers, such as cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, N-acetyl-β-glucosaminidase, β2- microglobulin, have shown obvious advantages in the early prediction of polymyxin-associated acute kidney injury. Compared to traditional biomarkers, these biomarkers can provide sensitive and specific diagnostic information in the early stages of kidney injury, helping to optimize individualized treatment plans and reduce clinical risks. However, the high cost of detection and complex operation still limit their clinical promotion. Future research should focus on optimizing the detection technology of new biomarkers, simplifying the operation process and reducing costs, while conducting multi-center, large-scale randomized controlled trials to systematically evaluate the sensitivity and specificity of various novel biomarkers, in order to promote their application in the field of prediction of renal injury in clinical practice.
7.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
8.Improvement effects and mechanism of Xiangsha yiwei tang on gastric mucosal injury in rats with chronic atrophic gastritis
Pengfei XIA ; Di JIN ; Jin LIANG ; Yi YU ; Jinjun DU ; Zhanyong JIN ; Jun FANG ; Xia YANG ; Huiwu LIU
China Pharmacy 2025;36(11):1311-1316
OBJECTIVE To investigate the improvement effects and mechanism of Xiangsha yiwei tang on gastric mucosal injury in rats with chronic atrophic gastritis (CAG). METHODS Rats were randomly assigned into normal control group, model group, Xiangsha yiwei tang low-, medium- and high-dose groups (6, 12, 18 g/kg, calculated by crude drug), and high-dose group of Xiangsha yiwei tang+740 Y-P [Xiangsha yiwei tang 18 g/kg+transforming growth factor β1/phosphatidyl inositol 3 kinase/ protein kinase B(TGF-β1/PI3K/Akt) pathway activator group 740 Y-P 10 mg/kg], with 18 rats in each group. Rats in each group were administered the corresponding drugs via oral gavage or injection, once daily, for 4 consecutive weeks. Gastric mucosal blood flow, the levels of serum gastrointestinal hormones [including motilin (MTL), gastrin (GAS), and pepsinogen (PP)], as well as inflammatory cytokines [including tumor necrosis factor- α (TNF- α), interleukin-1β (IL-1β), IL-6] in rats were measured. Pathological damage to gastric mucosal tissue was observed in rats; the apoptotic rate of gastric mucosal cells was detected. The expressions of TGF-β1/PI3K/Akt signaling pathway-related proteins and apoptosis-related proteins [including B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax)] in the gastric mucosal tissues of rats were assessed. RESULTS Compared with normal control group, model group had abnormal gastric mucosal tissue structure, with shedding of gastric mucosal epithelial cells, and prominent infiltration of inflammatory cells. Gastric mucosal blood flow, the serum levels of MTL, GAS, PP, and Bcl-2 protein expression were lowered significantly, while serum levels of TNF-α, IL-1β and IL-6, apoptosis rate, protein expressions of Bax and TGF-β1, the phosphorylations of PI3K and Akt were increased significantly (P<0.05). Compared with model group, Xiangsha yiwei decoction groups exhibited attenuated histopathological injuries in gastric mucosal tissues, reduced inflammatory cell infiltration, and significant improvements in the aforementioned quantitative parameters (P<0.05). Compared with high-dose group of Xiangsha yiwei tang, high-dose group of Xiangsha yiwei decoction combined with 740 Y-P exhibited significantly aggravated histopathological injuries in gastric mucosal tissues, and the aforementioned quantitative parameters were markedly reversed (P<0.05). CONCLUSIONS Xiangsha yiwei tang can alleviate gastric mucosal damage in CAG rats, and its mechanism of action is related to the inhibition of TGF-β1/PI3K/Akt signaling pathway.
9.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
10.Exploration on the paths of medical ethics education for medical students from the perspective of youth moral cultivation
Yuancong OUYANG ; Fang DONG ; Jun LI ; Miao GAO ; Haiyan LIU ; Qiuyu YANG
Chinese Medical Ethics 2025;38(11):1492-1497
The view of youth moral cultivation clearly defines the scope of “morality” and puts forward the requirement of “cultivating morality” for the youth. This is a systematic concept aligned with the main theme of the times and is worth deeply exploring and integrating into the practice of medical ethics education for medical students. With the requirements for innovation and development in medical education, the cultivation of medical students has also been endowed with new connotations. Guided by the connotations of the view of youth moral cultivation and aligned with the objective requirements of medical students’ cultivation, this paper leveraged the core values of traditional Chinese medicine as its entry point. It also explored the realization paths of medical ethics education for medical students that reflect advantages, highlight characteristics, and maintain clear orientation through strengthening the medical ethics education of “dedicated study of medicine,” “honesty and prudence in words and deeds,” “benevolence in heart and skills,” and “doctor-patient trust and harmony,” aiming to cultivate guardians of people’s health with noble medical ethics and superb medical skills.

Result Analysis
Print
Save
E-mail