1.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
2.Assessment of genetic associations between antidepressant drug targets and various stroke subtypes: A Mendelian randomization approach.
Luyang ZHANG ; Yunhui CHU ; Man CHEN ; Yue TANG ; Xiaowei PANG ; Luoqi ZHOU ; Sheng YANG ; Minghao DONG ; Jun XIAO ; Ke SHANG ; Gang DENG ; Wei WANG ; Chuan QIN ; Daishi TIAN
Chinese Medical Journal 2025;138(4):487-489
3.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
4.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Effects of Didang Decoction-containing serum on high glucose-induced injury of rat glomerular endothelial cells
Bao-Lu LUO ; Quan-Gen CHU ; Jun CHU ; Fei-Xiang LI ; Jing CHEN ; Yue-Qi WANG
Chinese Traditional Patent Medicine 2024;46(9):2930-2935
AIM To investigate the protective effects of Didang Decoction-containing serum on rat glomerular endothelial cells(RGECs)following high glucose injury.METHODS Rats were given distilled water or Didang Decoction by gavage to prepare the blank serum or Didang Decoction-containing serum.CCK8 method was used to screen the glucose concentration for the modeling and serum concentration of the drug.The RGECs were divided into the blank group,the model group,Didang Decoction group(10%Didang Decoction medicated serum),Dapagliflozin group(normal serum+2 μmol/L Dapagliflozin)and Didang Decoction+Dapagliflozin group(10%Didang Decoction medicated serum+2 μmol/L Dapagliflozin).24 hrs after the drug treatment,the RGECs had their mRNA and protein expressions of Nrf2,HO-1 and NQO-1 detected by RT-qPCR method and Western blot method;their Nrf2 fluorescence expression detected by immunofluorescence method;and their SOD activity and MDA level detected by colorimetric method.RESULTS Compared with the blank group,the model group displayed decreased mRNA and protein expressions of Nrf2,HO-1 and NQO-1 as well as the activity of SOD(P<0.01),and increased MDA level(P<0.01).Compared with the model group,the groups intervened with the drugs showed increased mRNA and protein expressions of Nrf2,HO-1 and NQO-1 as well as the activity of SOD(P<0.05,P<0.01),and decreased MDA level(P<0.01).CONCLUSION Didang Decoction-containing serum can protect RGECs from high glucose injury through activating the Nrf2 signaling pathway.
7.Multimodal image fusion-assisted endoscopic evacuation of spontaneous intracerebral hemorrhage
Chao ZHANG ; Juan LI ; Ping-Li WANG ; Hua-Yun CHEN ; Yu-Hang ZHAO ; Ning WANG ; Zhi-Tao ZHANG ; Yan-Wei DANG ; Hong-Quan WANG ; Jun WANG ; Chu-Hua FU
Chinese Journal of Traumatology 2024;27(6):340-347
Purpose::Although traditional craniotomy (TC) surgery has failed to show benefits for the functional outcome of intracerebral hemorrhage (ICH). However, a minimally invasive hematoma removal plan to avoid white matter fiber damage may be a safer and more feasible surgical approach, which may improve the prognosis of ICH. We conducted a historical cohort study on the use of multimodal image fusion-assisted neuroendoscopic surgery (MINS) for the treatment of ICH, and compared its safety and effectiveness with traditional methods.Methods::This is a historical cohort study involving 241 patients with cerebral hemorrhage. Divided into MINS group and TC group based on surgical methods. Multimodal images (CT skull, CT angiography, and white matter fiber of MRI diffusion-tensor imaging) were fused into 3 dimensional images for preoperative planning and intraoperative guidance of endoscopic hematoma removal in the MINS group. Clinical features, operative efficiency, perioperative complications, and prognoses between 2 groups were compared. Normally distributed data were analyzed using t-test of 2 independent samples, Nonnormally distributed data were compared using the Kruskal-Wallis test. Meanwhile categorical data were analyzed via the Chi-square test or Fisher’s exact test. All statistical tests were two-sided, and p < 0.05 was considered statistically significant. Results::A total of 42 patients with ICH were enrolled, who underwent TC surgery or MINS. Patients who underwent MINS had shorter operative time ( p < 0.001), less blood loss ( p < 0.001), better hematoma evacuation ( p =0.003), and a shorter stay in the intensive care unit ( p =0.002) than patients who underwent TC. Based on clinical characteristics and analysis of perioperative complications, there is no significant difference between the 2 surgical methods. Modified Rankin scale scores at 180 days were better in the MINS than in the TC group ( p =0.014). Conclusions::Compared with TC for the treatment of ICH, MINS is safer and more efficient in cleaning ICH, which improved the prognosis of the patients. In the future, a larger sample size clinical trial will be needed to evaluate its efficacy.
8.Progress on mechanism of action and neuroprotective effects of notoginsenoside R1
Han-Long WANG ; Yang SUN ; Sha-Sha LIU ; Jun-Peng LONG ; Qian YAN ; Yu-Ting LIN ; Jin-Ping LIANG ; Shi-Feng CHU ; Yan-Tao YANG ; Qi-Di AI ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(11):2020-2025
Panax notoginseng is the dried root and rhizome of Panax notoginseng(Burk.)F.H.Chen,a perennial erect herb of the genus Ginseng of the family Wujiaceae.As a traditional Chinese medicine in our country,Panax notoginseng has a good tonic effect,and the Dictionary of Traditional Chinese Medicines has the words that Panax notoginseng is used to tonify the blood,remove the blood stasis and damage,and stop epistaxis.It can also be used to pass the blood and tonify the blood with the best efficacy,and it is the most precious one of the prescription med-icines.Eaten raw,it removes blood stasis and generates new blood,subdues swelling and stabilizes pain,stops bleeding with-out leaving stasis,and promotes blood circulation without hurting the new blood;taken cooked,it can be used to replenish and strengthen the body.Notoginsenoside R1 is a characteristic com-pound in the total saponin of Panax ginseng.In recent years,China's aging has been increasing,and the incidence of neuro-logical disorders has been increasing year by year.Meanwhile,reports on notoginsenoside R1 in the treatment of neurological disorders are increasing,and its neuroprotective effects have been exerted with precise efficacy.The purpose of this paper is to review the treatment of neurological diseases and the mecha-nism of action of notoginsenoside R1,so as to provide a certain theoretical basis for clinical use and new drug development.
9.Dawn of CAR-T cell therapy in autoimmune diseases
Yuxin LIU ; Minghao DONG ; Yunhui CHU ; Luoqi ZHOU ; Yunfan YOU ; Xiaowei PANG ; Sheng YANG ; Luyang ZHANG ; Lian CHEN ; Lifang ZHU ; Jun XIAO ; Wei WANG ; Chuan QIN ; Daishi TIAN
Chinese Medical Journal 2024;137(10):1140-1150
Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable success in the treatment of hematological malignancies. Based on the immunomodulatory capability of CAR-T cells, efforts have turned toward exploring their potential in treating autoimmune diseases. Bibliometric analysis of 210 records from 128 academic journals published by 372 institutions in 40 countries/regions indicates a growing number of publications on CAR-T therapy for autoimmune diseases, covering a range of subtypes such as systemic lupus erythematosus, multiple sclerosis, among others. CAR-T therapy holds promise in mitigating several shortcomings, including the indiscriminate suppression of the immune system by traditional immunosuppressants, and non-sustaining therapeutic levels of monoclonal antibodies due to inherent pharmacokinetic constraints. By persisting and proliferating in vivo, CAR-T cells can offer a tailored and precise therapeutics. This paper reviewed preclinical experiments and clinical trials involving CAR-T and CAR-related therapies in various autoimmune diseases, incorporating innovations well-studied in the field of hematological tumors, aiming to explore a safe and effective therapeutic option for relapsed/refractory autoimmune diseases.
10.Whole genome analysis of a Coxsackievirus A4 strain from Yunnan
Jun-Wei CHEN ; Chang-Zeng FENG ; Zhao-Yang CHU ; Yu-Han LIU ; Ming ZHANG ; Li LI ; Shao-Hui MA
Chinese Journal of Infection Control 2024;23(9):1061-1069
Objective To understand the whole genome sequence characteristics of a Coxsackievirus A4(CVA4)isolated from Yunnan,China in 2022,and explore the phylogenetic characteristics of CVA4.Methods The whole genome sequence of CVA4 isolate 194R3/YN/CHN/2022 was amplified and sequenced,and the phylogenetic tree of CVA4 isolate was constructed by using Mega 7.0,Geneious 9.1.4 and Simplot 3.5.1 softwares.The whole ge-nome sequence characteristics were analyzed.Results The 194R3/YN/CHN/2022 isolate was identified as CVA4,belonging to the C2 gene subtype,which was consistent with the dominant gene subtype in recent years in China.Recombination analysis showed that recombination of CVA4 virus isolate with EVA114 prototype(V13-0285),CVA16 prototype(G-10),and CVA14 prototype(G-14)at the non-structural coding regions of P2 and P3 may have occurred.Conclusion The 194R3/YN/CHN/2022 isolated from Yunnan belongs to the C2 gene subtype,which is the prevalent CVA4 in China,but with certain mutations.

Result Analysis
Print
Save
E-mail