1.Application of Non-invasive Deep Brain Stimulation in Parkinson’s Disease Treatment
Yu-Feng ZHANG ; Wei WANG ; Zi-Jun LU ; Jiao-Jiao LÜ ; Yu LIU
Progress in Biochemistry and Biophysics 2025;52(5):1196-1205
Parkinson’s disease (PD) is a common neurodegenerative disorder that significantly impacts patients’ independence and quality of life, imposing a substantial burden on both individuals and society. Although dopaminergic replacement therapies provide temporary relief from various symptoms, their long-term use often leads to motor complications, limiting overall effectiveness. In recent years, non-invasive deep brain stimulation (DBS) techniques have emerged as promising therapeutic alternatives for PD, offering a means to modulate deep brain regions with high precision without invasive procedures. These techniques include temporal interference stimulation (TIs), low-intensity transcranial focused ultrasound stimulation (LITFUS), transcranial magneto-acoustic stimulation (TMAS), non-invasive optogenetic modulation, and non-invasive magnetoelectric stimulation. They have demonstrated significant potential in alleviating various PD symptoms by modulating neural activity within specific deep brain structures affected by the disease. Among these approaches, TIs and LITFUS have received considerable attention. TIs generate low-frequency interference by applying two slightly different high-frequency electric fields, targeting specific brain areas to alleviate symptoms such as tremors and bradykinesia. LITFUS, on the other hand, uses low-intensity focused ultrasound to non-invasively stimulate deep brain structures, showing promise in improving both motor function and cognition in PD patients. The other three techniques, while still in early research stages, also hold significant promise for deep brain modulation and broader clinical applications, potentially complementing existing treatment strategies. Despite these promising findings, significant challenges remain in translating these techniques into clinical practice. The heterogeneous nature of PD, characterized by variable disease progression and individualized treatment responses, necessitates flexible protocols tailored to each patient’s unique needs. Additionally, a comprehensive understanding of the mechanisms underlying these treatments is crucial for refining protocols and maximizing their therapeutic potential. Personalized medicine approaches, such as the integration of neuroimaging and biomarkers, will be pivotal in customizing stimulation parameters to optimize efficacy. Furthermore, while early-stage clinical trials have reported improvements in certain symptoms, long-term efficacy and safety data are limited. To validate these techniques, large-scale, multi-center, randomized controlled trials are essential. Parallel advancements in device design, including the development of portable and cost-effective systems, will improve patient access and adherence to treatment protocols. Combining non-invasive DBS with other interventions, such as pharmacological treatments and physical therapy, could also provide a more comprehensive and synergistic approach to managing PD. In conclusion, non-invasive deep brain stimulation techniques represent a promising frontier in the treatment of Parkinson’s disease. While they have demonstrated considerable potential in improving symptoms and restoring neural function, further research is needed to refine protocols, validate long-term outcomes, and optimize clinical applications. With ongoing technological and scientific advancements, these methods could offer PD patients safer, more effective, and personalized treatment options, ultimately improving their quality of life and reducing the societal burden of the disease.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.4 Weeks of HIIT Modulates Metabolic Homeostasis of Hippocampal Pyruvate-lactate Axis in CUMS Rats Improving Their Depression-like Behavior
Yu-Mei HAN ; Chun-Hui BAO ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Huan XIANG ; Jun-Sheng TIAN ; Shi ZHOU ; Shuang-Shuang WU
Progress in Biochemistry and Biophysics 2025;52(6):1468-1483
ObjectiveTo investigate the role of 4-week high-intensity interval training (HIIT) in modulating the metabolic homeostasis of the pyruvate-lactate axis in the hippocampus of rats with chronic unpredictable mild stress (CUMS) to improve their depressive-like behavior. MethodsForty-eight SPF-grade 8-week-old male SD rats were randomly divided into 4 groups: the normal quiet group (C), the CUMS quiet group (M), the normal exercise group (HC), and the CUMS exercise group (HM). The M and HM groups received 8 weeks of CUMS modeling, while the HC and HM groups were exposed to 4 weeks of HIIT starting from the 5th week (3 min (85%-90%) Smax+1 min (50%-55%) Smax, 3-5 cycles, Smax is the maximum movement speed). A lactate analyzer was used to detect the blood lactate concentration in the quiet state of rats in the HC and HM groups at week 4 and in the 0, 2, 4, 8, 12, and 24 h after exercise, as well as in the quiet state of rats in each group at week 8. Behavioral indexes such as sucrose preference rate, number of times of uprightness and number of traversing frames in the absenteeism experiment, and other behavioral indexes were used to assess the depressive-like behavior of the rats at week 4 and week 8. The rats were anesthetized on the next day after the behavioral test in week 8, and hippocampal tissues were taken for assay. LC-MS non-targeted metabolomics, target quantification, ELISA and Western blot were used to detect the changes in metabolite content, lactate and pyruvate concentration, the content of key metabolic enzymes in the pyruvate-lactate axis, and the protein expression levels of monocarboxylate transporters (MCTs). Results4-week HIIT intervention significantly increased the sucrose preference rate, the number of uprights and the number of traversed frames in the absent field experiment in CUMS rats; non-targeted metabolomics assay found that 21 metabolites were significantly changed in group M compared to group C, and 14 and 11 differential metabolites were significantly dialed back in the HC and HM groups, respectively, after the 4-week HIIT intervention; the quantitative results of the targeting showed that, compared to group C, lactate concentration in the hippocampal tissues of M group, compared with group C, lactate concentration in hippocampal tissue was significantly reduced and pyruvate concentration was significantly increased, and 4-week HIIT intervention significantly increased the concentration of lactate and pyruvate in hippocampal tissue of HM group; the trend of changes in blood lactate concentration was consistent with the change in lactate concentration in hippocampal tissue; compared with group C, the LDHB content of group M was significantly increased, the content of PKM2 and PDH, as well as the protein expression level of MCT2 and MCT4 were significantly reduced. The 4-week HIIT intervention upregulated the PKM2 and PDH content as well as the protein expression levels of MCT2 and MCT4 in the HM group. ConclusionThe 4-week HIIT intervention upregulated blood lactate concentration and PKM2 and PDH metabolizing enzymes in hippocampal tissues of CUMS rats, and upregulated the expression of MCT2 and MCT4 transport carrier proteins to promote central lactate uptake and utilization, which regulated metabolic homeostasis of the pyruvate-lactate axis and improved depressive-like behaviors.
4.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
5.Evaluating the impact of relative dose intensity on efficacy of trastuzumab deruxtecan for metastatic breast cancer in the real-world clinical setting.
Han Yi LEE ; Vivianne SHIH ; Jack Junjie CHAN ; Shun Zi LIONG ; Ryan Shea Ying Cong TAN ; Jun MA ; Bernard Ji Guang CHUA ; Joshua Zhi Chien TAN ; Chuan Yaw LEE ; Wei Ling TEO ; Su-Ming TAN ; Phyu NITAR ; Yoon Sim YAP ; Mabel WONG ; Rebecca DENT ; Fuh Yong WONG ; Tira J TAN
Annals of the Academy of Medicine, Singapore 2025;54(8):458-466
INTRODUCTION:
Trastuzumab deruxtecan (T-DXd) has revolutionised treatment for metastatic breast cancer (MBC). While effective, its high cost and toxicities, such as fatigue and nausea, pose challenges.
METHOD:
Medical records from the Joint Breast Cancer Registry in Singapore were used to study MBC patients treated with T-DXd (February 2021-June 2024). This study was conducted to address whether reducing dose intensity and density may have an adverse effect on treatment outcomes.
RESULTS:
Eighty-seven MBC patients were treated with T-DXd, with a median age of 59 years. At the time of data cutoff, 32.1% of patients were still receiving T-DXd. Over half (54%) of the patients received treatment with an initial relative dose intensity (RDI) of <;85%. Overall median real-world progression-free survival (rwPFS) was 8.1 months. rwPFS was similar between RDI groups (<85%: 8.7 months, <85%: 8.1 months, P=0.62). However, human epidermal growth receptor 2 (HER2)-positive patients showed significantly better rwPFS outcomes compared to HER2-low patients (8.8 versus 2.5 months, P<0.001). Only 16% with central nervous system (CNS) involvement had CNS progressive disease on treatment. No significant progression-free survival (PFS) differences were found between patients with or without CNS disease, regardless of RDI groups. Five patients (5.7%) developed interstitial lung disease (ILD), with 3 (3.4%) having grade 3 events. Two required high-dose steroids and none were rechallenged after ILD. There were no fatalities.
CONCLUSION
Our study demonstrated that reduced dose intensity and density had no significant impact on rwPFS or treatment-related toxicities. Furthermore, only 5.7% of patients developed ILD. T-Dxd provided good control of CNS disease, with 82% of patients achieving CNS disease control.
Humans
;
Female
;
Breast Neoplasms/mortality*
;
Middle Aged
;
Trastuzumab/adverse effects*
;
Aged
;
Adult
;
Singapore/epidemiology*
;
Antineoplastic Agents, Immunological/adverse effects*
;
Camptothecin/adverse effects*
;
Immunoconjugates/adverse effects*
;
Retrospective Studies
;
Progression-Free Survival
;
Receptor, ErbB-2/metabolism*
;
Neoplasm Metastasis
;
Dose-Response Relationship, Drug
;
Treatment Outcome
;
Registries
6.Synergistic neuroprotective effects of main components of salvianolic acids for injection based on key pathological modules of cerebral ischemia.
Si-Yu TAN ; Ya-Xu WU ; Zi-Shu YAN ; Ai-Chun JU ; De-Kun LI ; Peng-Wei ZHUANG ; Yan-Jun ZHANG ; Hong GUO
China Journal of Chinese Materia Medica 2025;50(3):693-701
This study aims to explore the synergistic effects of the main components in salvianolic acids for Injection(SAFI) on key pathological events in cerebral ischemia, elucidating the pharmacological characteristics of SAFI in neuroprotection. Two major pathological gene modules related to endothelial injury and neuroinflammation in cerebral ischemia were mined from single-cell data. According to the topological distance calculated in network medicine, potential synergistic component combinations of SAFI were screened out. The results showed that the combination of caffeic acid and salvianolic acid B scored the highest in addressing both endothelial injury and neuroinflammation, demonstrating potential synergistic effects. The cell experiments confirmed that the combination of these two components at a ratio of 1∶1 significantly protected brain microvascular endothelial cells(bEnd.3) from oxygen-glucose deprivation/reoxygenation(OGD/R)-induced reperfusion injury and effectively suppressed lipopolysaccharide(LPS)-induced neuroinflammatory responses in microglial cells(BV-2). This study provides a new method for uncovering synergistic effects among active components in traditional Chinese medicine(TCM) and offers novel insights into the multi-component, multi-target acting mechanisms of TCM.
Brain Ischemia/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Benzofurans/pharmacology*
;
Mice
;
Drug Synergism
;
Caffeic Acids/pharmacology*
;
Polyphenols/pharmacology*
;
Humans
;
Alkenes/pharmacology*
;
Endothelial Cells/drug effects*
;
Depsides
7.Biological characteristics of pathogen causing damping off on Aconitum kusnezoffiii and inhibitory effect of effective fungicides.
Si-Yi GUO ; Si-Yao ZHOU ; Tie-Lin WANG ; Ji-Peng CHEN ; Zi-Bo LI ; Ru-Jun ZHOU
China Journal of Chinese Materia Medica 2025;50(7):1727-1734
Aconitum kusnezoffii is a perennial herbaceous medicinal plant of the family Ranunculaceae, with unique medicinal value. Damping off is one of the most important seedling diseases affecting A. kusnezoffii, occurring widely and often causing large-scale seedling death in the field. To clarify the species of the pathogen causing damping off in A. kusnezoffii and to formulate an effective control strategy, this study conducted pathogen identification, research on biological characteristics, and evaluation of fungicide inhibitory activity. Through morphological characteristics, cultural traits, and phylogenetic tree analysis, the pathogen causing damping off in A. kusnezoffii was identified as Rhizoctonia solani, belonging to the AG5 anastomosis group. The optimal temperature for mycelial growth of the pathogen was 25-30 ℃, with OA medium as the most suitable medium, pH 8 as the optimal pH, and sucrose and yeast as the best carbon and nitrogen sources, respectively. The effect of light on mycelial growth was not significant. In evaluating the inhibitory activity of 45 chemical fungicides, including 30% hymexazol, and 4 biogenic fungicides, including 0.3% eugenol, it was found that 30% thifluzamide and 50% fludioxonil had significantly better inhibitory effects on R. solani than other tested agents, with EC_(50) values of 0.129 6,0.220 6 μg·mL~(-1), respectively. Among the biogenic fungicides, 0.3% eugenol also showed an ideal inhibitory effect on the pathogen, with an EC_(50) of 1.668 9 μg·mL~(-1). To prevent the development of resistance in the pathogen and to reduce the use of chemical fungicides, it is recommended that the three fungicides above be used in rotation during production. These findings provide a theoretical basis for the accurate diagnosis and effective control strategy for R. solani causing damping off in A. kusnezoffii.
Fungicides, Industrial/pharmacology*
;
Plant Diseases/microbiology*
;
Rhizoctonia/growth & development*
;
Aconitum/microbiology*
;
Phylogeny
;
Mycelium/growth & development*
8.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans
9.Analysis of impact of host plants on quality of Taxilli Herba based on widely targeted metabolomics.
Dong-Lan ZHOU ; Zi-Shu CHAI ; Mei RU ; Fei-Ying HUANG ; Xie-Jun ZHANG ; Min GUO ; Yong-Hua LI
China Journal of Chinese Materia Medica 2025;50(12):3281-3290
This study aims to explore the impact of host plants on the quality of Taxilli Herba and provide a theoretical basis for the quality control of Taxilli Herba. The components of Taxilli Herba from three different host plants(Morus alba, Salix babylonica, and Cinnamomum cassia) and its 3 hosts(mulberry branch, willow branch, and cinnamon branch) were detected by widely targeted metabolomics based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). Principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and Venn diagram were employed for analysis. A total of 717 metabolites were detected in Taxilli Herba from the three host plants and the branches of these host plants by UPLC-MS/MS. The results of PCA and OPLS-DA of Taxilli Herba from the three different host plants showed an obvious separation trend due to the different effects of host plants. The Venn diagram showed that there were 32, 8, and 26 characteristic metabolites in samples of Taxilli Herba from M. alba host, S. babylonica host, and C. cassia host, respectively. It was found by comparing the characteristic metabolites of Taxilli Herba and its hosts that each host transmits its characteristic components to Taxilli Herba, so that the Taxilli Herba contains the characteristic components of the host. The Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis showed that the differential metabolites of Taxilli Herba from the three hosts were mainly enriched in flavonoid biosynthesis, arginine and proline metabolism, and glycolysis/gluconeogenesis pathways. Furthermore, the differential metabolites enriching pathways of Taxilli Herba from the three hosts were different depending on the host. In a word, host plants have a significant impact on the metabolites of Taxilli Herba, and it may be an important factor for the quality of Taxilli Herba.
Metabolomics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Quality Control
;
Salix/chemistry*
;
Cinnamomum aromaticum/metabolism*
;
Principal Component Analysis
10.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires

Result Analysis
Print
Save
E-mail