1.Study on the modeling method of general model of Yaobitong capsule intermediates quality analysis based on near infrared spectroscopy
Le-ting SI ; Xin ZHANG ; Yong-chao ZHANG ; Jiang-yan ZHANG ; Jun WANG ; Yong CHEN ; Xue-song LIU ; Yong-jiang WU
Acta Pharmaceutica Sinica 2025;60(2):471-478
The general models for intermediates quality analysis in the production process of Yaobitong capsule were established by near infrared spectroscopy (NIRS) combined with chemometrics, realizing the rapid determination of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, ginsenoside Rd and moisture. The spray-dried fine powder and total mixed granule were selected as research objects. The contents of five saponins were determined by high performance liquid chromatography and the moisture content was determined by drying method. The measured contents were used as reference values. Meanwhile, NIR spectra were collected. After removing abnormal samples by Monte Carlo cross validation (MCCV), Monte Carlo uninformative variables elimination (MC-UVE) and competitive adaptive reweighted sampling (CARS) were used to select feature variables respectively. Based on the feature variables, quantitative models were established by partial least squares regression (PLSR), extreme learning machine (ELM) and ant lion optimization least squares support vector machine (ALO-LSSVM). The results showed that CARS-ALO-LSSVM model had the optimum effect. The correlation coefficients of the six index components were greater than 0.93, and the relative standard errors were controlled within 6%. ALO-LSSVM was more suitable for a large number of samples with rich information, and the prediction effect and stability of the model were significantly improved. The general models with good predicting effect can be used for the rapid quality determination of Yaobitong capsule intermediates.
2.PANoptosis: a New Target for Cardiovascular Diseases
Xin-Nong CHEN ; Ying-Xi YANG ; Xiao-Chen GUO ; Jun-Ping ZHANG ; Na-Wen LIU
Progress in Biochemistry and Biophysics 2025;52(5):1113-1125
The innate immune system detects cellular stressors and microbial infections, activating programmed cell death (PCD) pathways to eliminate intracellular pathogens and maintain homeostasis. Among these pathways, pyroptosis, apoptosis, and necroptosis represent the most characteristic forms of PCD. Although initially regarded as mechanistically distinct, emerging research has revealed significant crosstalk among their signaling cascades. Consequently, the concept of PANoptosis has been proposed—an inflammatory cell death pathway driven by caspases and receptor-interacting protein kinases (RIPKs), and regulated by the PANoptosome, which integrates key features of pyroptosis, apoptosis, and necroptosis. The core mechanism of PANoptosis involves the assembly and activation of the PANoptosome, a macromolecular complex composed of three structural components: sensor proteins, adaptor proteins, and effector proteins. Sensors detect upstream stimuli and transmit signals downstream, recruiting critical molecules via adaptors to form a molecular scaffold. This scaffold activates effectors, triggering intracellular signaling cascades that culminate in PANoptosis. The PANoptosome is regulated by upstream molecules such as interferon regulatory factor 1 (IRF1), transforming growth factor beta-activated kinase 1 (TAK1), and adenosine deaminase acting on RNA 1 (ADAR1), which function as molecular switches to control PANoptosis. Targeting these switches represents a promising therapeutic strategy. Furthermore, PANoptosis is influenced by organelle functions, including those of the mitochondria, endoplasmic reticulum, and lysosomes, highlighting organelle-targeted interventions as effective regulatory approaches. Cardiovascular diseases (CVDs), the leading global cause of morbidity and mortality, are profoundly impacted by PCD. Extensive crosstalk among multiple cell death pathways in CVDs suggests a complex regulatory network. As a novel cell death modality bridging pyroptosis, apoptosis, and necroptosis, PANoptosis offers fresh insights into the complexity of cell death and provides innovative strategies for CVD treatment. This review summarizes current evidence linking PANoptosis to various CVDs, including myocardial ischemia/reperfusion injury, myocardial infarction, heart failure, arrhythmogenic cardiomyopathy, sepsis-induced cardiomyopathy, cardiotoxic injury, atherosclerosis, abdominal aortic aneurysm, thoracic aortic aneurysm and dissection, and vascular toxic injury, thereby providing critical clinical insights into CVD pathophysiology. However, the current understanding of PANoptosis in CVDs remains incomplete. First, while PANoptosis in cardiomyocytes and vascular smooth muscle cells has been implicated in CVD pathogenesis, its role in other cell types—such as vascular endothelial cells and immune cells (e.g., macrophages)—warrants further investigation. Second, although pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are known to activate the PANoptosome in infectious diseases, the stimuli driving PANoptosis in CVDs remain poorly defined. Additionally, methodological challenges persist in identifying PANoptosome assembly in CVDs and in establishing reliable PANoptosis models. Beyond the diseases discussed, PANoptosis may also play a role in viral myocarditis and diabetic cardiomyopathy, necessitating further exploration. In conclusion, elucidating the role of PANoptosis in CVDs opens new avenues for drug development. Targeting this pathway could yield transformative therapies, addressing unmet clinical needs in cardiovascular medicine.
3.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
4.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
5.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
6.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
7.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
8.A new pyrazine from Hypecoum erectum L.
Yun LIU ; Meng-ya HU ; Wen-jing ZHANG ; Yu-xin FAN ; Rui-wen XU ; Deng-hui ZHU ; Yan-jun SUN ; Wei-sheng FENG ; Hui CHEN
Acta Pharmaceutica Sinica 2024;59(1):183-187
Four pyrazines were isolated from the
9.Bioequivalence study of sidenafil citrate tablets in Chinese healthy subjects
Xiao-Bin LI ; Lu CHEN ; Xiu-Jun WU ; Yu-Xin GE ; Wen-Chao LU ; Ting XIAO ; He XIE ; Hua-Wei WANG ; Wen-Ping WANG
The Chinese Journal of Clinical Pharmacology 2024;40(3):430-434
Objective To evaluate the bioequivalence of oral sidenafil citrate tablets manufactured(100 mg)test preparations and reference preparations in healthy subjects under fasting and fed conditions.Methods Using a single-dose,randomized,open-lable,two-period,two-way crossover design,36 healthy subjects respectively for fasting and fed study were enrolled,and randomized into two groups to receive a single dose of test 100 mg with 7-day washout period.Plasma concentration of sidenafil and N-demethylsildenafil was determined by liquid chromatography-tandem mass spectrometry(LC-MS/MS)method.The pharmacokinetic parameters were calculated by Analyst 1.6.3(AB Scie)using non-compartmental model,and bioequivalence evaluation was performed for the two preparations.Relevant safety evaluations were performed during the trial.Results The main pharmacokinetic parameters of sidenafil after a single oral dose of sidenafil citrate tablets under fasting condition for test and reference were as follows:Cmax were(494.69±230.94)and(558.78±289.83)ng·mL-1,AUC0-t were(1 336.21±509.78)and(1 410.82±625.99)h·ng·mL-1,AUC0-were(1 366.49±512.16)and(1 441.84±628.04)h·ng·mL-1,respectively.The main pharmacokinetic parameters of sidenafil under fed condition for T and R were as follows:Cmax were(381.89±126.53)and(432.47±175.91)ng·mL-1,AUC0-t were(1 366.34±366.99)and(1 412.76±420.37)h·ng·mL-1,AUC0-were(1 403.28±375.32)and(1 454.13±429.87)h·ng·mL-1,respectively.The results demonstrated the bioequivalence of sidenafil citrate tablets between T and R.The incidence of adverse events in fasting and fed tests were 33.33%and 25.00%,respectively.No serious adverse event was reported.Conclusion The test and reference formulation of sidenafil citrate tablets were equivalent and was safe.
10.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.

Result Analysis
Print
Save
E-mail