1.Diagnosis and treatment of colorectal liver metastases: Chinese expert consensus-based multidisciplinary team (2024 edition).
Wen ZHANG ; Xinyu BI ; Yongkun SUN ; Yuan TANG ; Haizhen LU ; Jun JIANG ; Haitao ZHOU ; Yue HAN ; Min YANG ; Xiao CHEN ; Zhen HUANG ; Weihua LI ; Zhiyu LI ; Yufei LU ; Kun WANG ; Xiaobo YANG ; Jianguo ZHOU ; Wenyu ZHANG ; Muxing LI ; Yefan ZHANG ; Jianjun ZHAO ; Aiping ZHOU ; Jianqiang CAI
Chinese Medical Journal 2025;138(15):1765-1768
2.Research progress on chemical constituents, pharmacological effects of Anemarrhenae Rhizoma and predictive analysis of its quality markers.
Wen-Jun WANG ; Ze-Min YANG ; An LIU ; Li-Dong SHAO ; Jin-Tang CHENG
China Journal of Chinese Materia Medica 2025;50(4):934-945
Anemarrhenae Rhizoma is bitter, sweet, and cold in nature, and has the effects of clearing heat, dispelling fire, nourishing Yin, and moisturizing dryness. It is associated with the lung, stomach, and kidney meridians, and is mainly distributed in the northwestern and northern regions of China. Modern research has shown that Anemarrhenae Rhizoma contains various chemical active constituents, including steroidal saponins, flavonoids, polysaccharides, lignans, volatile oils, and alkaloids. These constituents exhibit pharmacological effects such as anti-tumor, hypoglycemic, anti-inflammatory, and neuroprotective activities. However, there have been few comprehensive summaries of Anemarrhenae Rhizoma in recent years, which has limited its in-depth research and development. The complexity of traditional Chinese medicine constituents, along with their quality and efficacy, is easily influenced by processing, preparation, and the growing environment and resource distribution. This paper summarizes the resources, chemical constituents, and pharmacological effects of Anemarrhenae Rhizoma, and predicts its quality markers(Q-markers) from several aspects, including the specificity of chemical composition, properties related to preparation and active ingredients, measurability of chemical components, compounding environment, construction of the ″active ingredient-target″ network pathway, and differences in active ingredient content from different origins and parts. These predicted Q-markers may provide a basis for improving the quality evaluation system of Anemarrhenae Rhizoma.
Anemarrhena/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Rhizome/chemistry*
;
Humans
;
Animals
;
Quality Control
3.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
4.Mechanism of Sorbus tianschanica in regulating asthmatic airway inflammation through TLR4/PI3K/Akt/MMP9 signaling pathway.
Wen-Kai WANG ; Jun-Min CHANG ; Xiao-Li MA ; Gai-Ru LI
China Journal of Chinese Materia Medica 2025;50(15):4304-4314
To investigate the effects and mechanisms of the water extract from Sorbus tianschanica(STE) on asthmatic airway inflammation, the mice were randomly divided into six groups, including a control group, a model group, a positive drug dexamethasone group(2 mg·kg~(-1)), a low-dose STE group(1 g·kg~(-1)), a medium-dose STE group(2 g·kg~(-1)), and a high-dose STE group(4 g·kg~(-1)). Except for the control group, all groups were subjected to ovalbumin induction to establish an asthma mouse model. The anti-inflammatory effects of STE were evaluated by examining pathological changes in lung tissue and measuring the levels of interleukin(IL)-4 and IL-5 in bronchoalveolar lavage fluid(BALF). Transcriptomic and proteomic methods were further employed to analyze differentially expressed genes and proteins, as well as their associated signaling pathways in lung tissue. Subsequently, the expression changes of key genes were verified by reverse transcription-quantitative polymerase chain reaction(RT-qPCR), and immunohistochemistry and Western blot methods were used to explore the regulatory mechanisms of STE in the pathogenesis of asthma in mice. Molecular docking was performed by using AutoDock Vina software to evaluate the binding affinity of the main active components in STE with the target proteins, including phosphatidylinositol-3-kinase catalytic subunit α(PIK3CA), Toll-like receptor 4(TLR4), protein kinase B1(Akt1), and matrix metallopeptidase 9(MMP9). The results showed significant inflammatory cell infiltration and fibrous tissue proliferation in the lung tissue of mice in the model group. However, these pathological changes were markedly reduced following STE intervention. Compared with those of the control group, the expression levels of IL-4 and IL-5 in the BALF of the model group were significantly increased but notably decreased following STE intervention. Transcriptomic and proteomic analyses identified key genes and proteins associated with allergic asthma, including tumor necrosis factor(TNF), IL-6, TLR4, PIK3CA, and MMP9. RT-qPCR validation revealed that high-dose STE intervention significantly downregulated the expressions of PIK3CA, IL-6, Akt1, MMP9, IL-13, nuclear factor-kappa B(NF-κB), TNF, CXC motif chemokine ligand 1(CXCL1), and TLR4 mRNAs and significantly upregulated the expression of signal transducer and activator of transcription 1(STAT1) mRNA. Western blot and immunohistochemical analyses confirmed that STE significantly downregulated the expressions of MMP9, TLR4, PIK3CA, and phosphorylated protein kinase B(p-Akt) in lung tissue of asthmatic mice. Moreover, molecular docking demonstrated that kaempferol-3,7-diglucoside, isoquercitrin, quercetin-3-gentiobioside, and hyperoside in STE exhibited stable binding affinities with PIK3CA, TLR4, Akt1, and MMP9, suggesting that the active components may exert anti-inflammatory effects by targeting and modulating asthma-related signaling pathways. In summary, STE exerts anti-asthmatic effects by inhibiting the expressions of PIK3CA, MMP9, p-Akt, and TLR4 and regulating the TLR4/PI3K/Akt/MMP9 signaling pathway.
Animals
;
Asthma/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Signal Transduction/drug effects*
;
Mice
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Mice, Inbred BALB C
;
Drugs, Chinese Herbal/administration & dosage*
;
Female
;
Humans
;
Lung/immunology*
;
Male
5.Effect of Acupuncture on Clinical Symptoms of Patients with Intractable Facial Paralysis: A Multicentre, Randomized, Controlled Trial.
Hong-Yu XIE ; Ze-Hua WANG ; Wen-Jing KAN ; Ai-Hong YUAN ; Jun YANG ; Min YE ; Jie SHI ; Zhen LIU ; Hong-Mei TONG ; Bi-Xiang CHA ; Bo LI ; Xu-Wen YUAN ; Chao ZHOU ; Xiao-Jun LIU
Chinese journal of integrative medicine 2025;31(9):773-781
OBJECTIVE:
To evaluate the clinical effect and safety of acupuncture manipulation on treatment of intractable facial paralysis (IFP), and verify the practicality and precision of the Anzhong Facial Paralysis Precision Scale (Eyelid Closure Grading Scale, AFPPS-ECGS).
METHODS:
A multicentre, single-blind, randomized controlled trial was conducted from October 2022 to June 2024. Eighty-nine IFP participants were randomly assigned to an ordinary acupuncture group (OAG, 45 cases) and a characteristic acupuncture group (CAG, 44 cases) using a random number table method. The main acupoints selected included Yangbai (GB 14), Quanliao (SI 18), Yingxiang (LI 20), Shuigou (GV 26), Dicang (ST 4), Chengjiang (CV 24), Taiyang (EX-HN 5), Jiache (ST 6), Fengchi (GB 20), and Hegu (LI 4). The OAG patients received ordinary acupuncture manipulation, while the CAG received characteristic acupuncture manipulation. Both groups received acupuncture treatment 3 times a week, with 10 times per course, lasting for 10 weeks. Facial recovery was assessed at baseline and after the 1st, 2nd and 3rd treatment course by AFPPS-ECGS and the House-Brackmann (H-B) Grading Scale. Infrared thermography technology was used to observe the temperature difference between healthy and affected sides in various facial regions. Adverse events and laboratory test abnormalities were recorded. The correlation between the scores of the two scales was analyzed using Pearson correlation coefficient.
RESULTS:
After the 2nd treatment course, the two groups showed statistically significant differences in AFPPS-ECGS scores (P<0.05), with even greater significance after the 3rd course (P<0.01). Similarly, H-B Grading Scale scores demonstrated significant differences between groups following the 3rd treatment course (P<0.05). Regarding temperature measurements, significant differences in temperatures of frontal and ocular areas were observed after the 2nd course (P<0.05), becoming more pronounced after the 3rd course (P<0.01). Additionally, mouth corner temperature differences reached statistical significance by the 3rd course (P<0.05). No safety-related incidents were observed during the study. Correlation analysis revealed that the AFPPS-ECGS and the H-B Grading Scale were strongly correlated (r=0.86, 0.91, 0.93, and 0.91 at baseline, and after 1st, 2nd, and 3rd treatment course, respectively, all P<0.01).
CONCLUSIONS
Acupuncture is an effective treatment for IFP, and the characteristic acupuncture manipulation enhances the therapeutic effect. The use of the AFPPS-ECGS can more accurately reflect the recovery status of patients with IFP. (Trial registration No. ChiCTR2200065442).
Humans
;
Acupuncture Therapy/methods*
;
Facial Paralysis/therapy*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Treatment Outcome
;
Acupuncture Points
;
Aged
6.Application Progress of Electrochemical Methods in Quality Control of Traditional Chinese Medicine
Yan-Bing PAN ; IHSAN AWAIS ; Min SHI ; Wen-Wen MA ; MURTAZA GHULAM ; Ke-Fei HU ; Jun LI ; Xian-Ju HUANG ; Han CHENG
Chinese Journal of Analytical Chemistry 2024;52(1):22-34
The quality control of traditional Chinese medicine(TCM)is the core issue to ensure the modernization,industrialization and internationalization of TCM.Compared with other detection methods,electrochemical analysis method has many advantages such as high sensitivity,fast detection speed and low cost,making it an important means of quality control for TCM and having broad development prospects.This article reviewed the research progress of electrochemical methods in quality control of TCM in recent years,discussed the application of electrochemical fingerprinting technique in identification of TCM,and comprehensively summarized the application of electrochemical technology in analyzing effective components and harmful substances in TCM,including flavonoids,alkaloids,quinones,glycosides,heavy metals and pesticide residues.Finally,the development prospects of electrochemical methods in the field of quality control of TCM were discussed.
7.Identification of chemical components of Longmu Qingxin Mixture by UPLC-Q-TOF-MS and research on its material basis for attention deficit hyperactivity disorder
Xue-Jun LI ; Zhi-Yan JIANG ; Zhen XIAO ; Xiu-Feng CHEN ; Shu-Min WANG ; Yi-Xing ZHANG ; Wen-Yan PU
Chinese Traditional Patent Medicine 2024;46(2):490-498
AIM To identify the chemical components of Longmu Qingxin Mixture by UPLC-Q-TOF-MS and study its material basis for the treatment of attention deficit hyperactivity disorder.METHODS The sample was detected by mass spectrometry in positive and negative ion mode on a Waters CORTECS? UPLC? T3 chromatographic column.The data were analyzed with Peakview 1.2 software and matched with the Natural Products HR-MS/MS Spectral Library 1.0 database,and the components were identified in combination with literature reports.The material basis of Longmu Qingxin Mixture for the treatment of attention deficit hyperactivity disorder was analysed according to the identified components.RESULTS Forty chemical components were identified,including 11 flavonoids,6 monoterpene glycosides,4 triterpene saponins,3 phenolic acids,6 alkaloids etc.,which mainly derived from Radix Astragali,Radix Paeoniae Alba,Radix Scutellariae,licorice root,Ramulus Uncariae cum,etc.,baicalein,formononetin,astragaloside Ⅳ and rhynchophylline may be the material basis for the therapeutic effect of Longmu Qingxin Mixture.CONCLUSION UPLC-Q-TOF-MS can quickly identify the chemical components of Longmu Qingxin Mixture.Flavonoids,triterpene saponins and alkaloids may be the material basis for Longmu Qingxin Mixture for the treatment of attention deficit hyperactivity disorder,which can provide the basis for its material basis research,quality standard establishment and pharmacological study of the dismantled formula.
8.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
9.Discussion on the anti-depression mechanism of Zishui Qinggan Decoction based on PINK1/Parkin and cGAS/STING signaling pathways
Wen ZHU ; Wen ZHANG ; Min CAI ; Feng YANG ; Yijin XIANG ; Xiangting LI ; Yunke YANG ; Dingfang CAI ; Jun XIANG
International Journal of Traditional Chinese Medicine 2024;46(6):724-730
Objective:To explore the effects of Zishui Qinggan Decoction on the PTEN-induced putative kinase protein 1 (PINK1)/Parkin and cyclic GMP-AMP (cGAS)/ stimulator of interferon genes (STING) signaling pathways; To reveal the anti-inflammatory mechanism of Zishui Qinggan Decoction in treating depression.Methods:Totally 60 rats were randomly divided into control group, model group, and Zishui Qinggan Decoction low-, medium-, and high-dosage groups using a random number table method ( n=12 in each group) . All rats except for the rats in control group were prepared with CUMS induced depression models. The rats in the Zishui Qinggan Decoction low-, medium-, and high-dosage groups were orally administered with 12, 24, and 48 g/kg of Zishui Qinggan Decoction for gavage, respectively. The control group and model group were orally administered with distilled water of equal volume for gavage, once a day for 4 weeks. Forced swimming test (FST), the open field test (OFT) and the sucrose preference test (SPT) were used to detect behavioral changes in rats in each group. Hematoxylin eosin (HE) staining was used to observe the cell structure of the medial prefrontal cortex. The levels of IL-1 β, IL-6, TNF-α and Interferon-γ (IFN-γ) were detected using ELISA. Western blot was used to detect the expressions of Pink1, Parkin, cGAS and STING. Results:Behavioral testing results showed that, compared with the model group, the incubation period for rats in Zishui Qinggan Decoction low-, medium-, and high-dosage groups to enter the first immobility state in FST was significantly prolonged ( P<0.05), and the immobility time was significantly shortened ( P<0.05); the time spent in the central area was significantly increased ( P<0.05), and the incubation period for entering the central area was significantly shortened in ( P<0.05); the percentage of sugar water consumption significantly increased in ( P<0.05). HE staining revealed that the aggregation of prefrontal cortex nuclei decreased, the number of neurons increased, and the distribution of neurons was uniform in Zishui Qinggan Decoction low-, medium-, and high-dosage groups. Compared with the model group, the levels of IL-1β, IL-6, TNF-α and IFN-γ in the Zishui Qinggan Decoction groups significantly decreased ( P<0.05). The protein expressions of PINK1 and Parkin in the prefrontal cortex in Zishui Qinggan Decoction groups significantly increased ( P<0.05), while the protein expression levels of cGAS and STING significantly decreased ( P<0.05). Conclusion:Zishui Qinggan Decoction can significantly improve the depressive behavior, neuronal damage, and neuroinflammatory response in CUMS rats. Its mechanism may be related to up-regulating the PINK1/Parkin signaling pathway and inhibiting the cGAS/STING signaling pathway.
10.Wang Wen-jun's experience in the treatment of premature ovarian insufficiency complicated with infertility by integrating traditional Chinese and western medicine
Shu-Hui HUANG ; Li-Li XU ; Lai-Di QIAN ; Min-Jie TANG ; Wen-Jun WANG
Fudan University Journal of Medical Sciences 2024;51(5):784-788
Patients with premature ovarian insufficiency(POI)suffer from a significant decline in ovarian function,which severely affects their fertility.To date,there is no definitive and effective treatment for patients with POI accompanied by infertility.Professor Wang Wen-jun proposed the principles of"integrating Chinese and western medicine,precise medication""treating the root cause,adhering to the treatment rules and adjusting the prescription"and"being cautious of the subtle,preventing the gradual,and treating before changes occur"which have been effective when Chinese and western medicines are used in combination.This article also introduces three cases of patients with POI accompanied by infertility who successfully became pregnant after being treated with Professor Wang Wen-jun's integrated Chinese and western medicine treatment plan,aiming to provide ideas for the integrated treatment of POI accompanied by infertility.

Result Analysis
Print
Save
E-mail