1.JMJD1C forms condensate to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells.
Qian CHEN ; Saisai WANG ; Juqing ZHANG ; Min XIE ; Bin LU ; Jie HE ; Zhuoran ZHEN ; Jing LI ; Jiajun ZHU ; Rong LI ; Pilong LI ; Haifeng WANG ; Christopher R VAKOC ; Robert G ROEDER ; Mo CHEN
Protein & Cell 2025;16(5):338-364
JMJD1C (Jumonji Domain Containing 1C), a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.
Core Binding Factor Alpha 2 Subunit/genetics*
;
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Jumonji Domain-Containing Histone Demethylases/chemistry*
;
Gene Expression Regulation, Leukemic
;
Oxidoreductases, N-Demethylating/genetics*
;
Cell Line, Tumor
2.The PHD1 finger of KDM5B recognizes unmodified H3K4 during the demethylation of histone H3K4me2/3 by KDM5B.
Yan ZHANG ; Huirong YANG ; Xue GUO ; Naiyan RONG ; Yujiao SONG ; Youwei XU ; Wenxian LAN ; Xu ZHANG ; Maili LIU ; Yanhui XU ; Chunyang CAO
Protein & Cell 2014;5(11):837-850
KDM5B is a histone H3K4me2/3 demethylase. The PHD1 domain of KDM5B is critical for demethylation, but the mechanism underlying the action of this domain is unclear. In this paper, we observed that PHD1KDM5B interacts with unmethylated H3K4me0. Our NMR structure of PHD1KDM5B in complex with H3K4me0 revealed that the binding mode is slightly different from that of other reported PHD fingers. The disruption of this interaction by double mutations on the residues in the interface (L325A/D328A) decreases the H3K4me2/3 demethylation activity of KDM5B in cells by approximately 50% and increases the transcriptional repression of tumor suppressor genes by approximately twofold. These findings imply that PHD1KDM5B may help maintain KDM5B at target genes to mediate the demethylation activities of KDM5B.
Binding Sites
;
genetics
;
Crystallography, X-Ray
;
Gene Expression Regulation
;
HEK293 Cells
;
Histones
;
chemistry
;
metabolism
;
Humans
;
Jumonji Domain-Containing Histone Demethylases
;
chemistry
;
genetics
;
metabolism
;
Lysine
;
chemistry
;
metabolism
;
Magnetic Resonance Spectroscopy
;
Methylation
;
Microscopy, Fluorescence
;
Models, Molecular
;
Mutation
;
Nuclear Proteins
;
chemistry
;
genetics
;
metabolism
;
Peptides
;
chemistry
;
genetics
;
metabolism
;
Protein Binding
;
Protein Structure, Tertiary
;
Repressor Proteins
;
chemistry
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail