1.Clinical efficacy of Liwen procedure for obstructive hypertrophic cardiomyopathy: A retrospective study in a single center
Shuai WANG ; Juan TAN ; Hongyan XIAO ; Liang TAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):819-823
Objective To analyze the changes in myocardial injury markers and cardiac function in patients with hypertrophic obstructive cardiomyopathy (HOCM) after Liwen surgery. Methods A retrospective analysis was conducted on the clinical data of HOCM patients who underwent Liwen surgery at the Department of Cardiac Surgery, Wuhan Asia Heart Hospital from December 2019 to April 2023, mainly including preoperative and postoperative dynamic follow-up laboratory test results and echocardiograms. Results A total of 42 patients were included, with 25 males and 17 females, aged (44.76±17.72) years, and a postoperative follow-up time of (15.02±6.97) months. The myocardial troponin level of the patients decreased from preoperative 0.03 (0.02, 0.06) ng/mL to postoperative 0.02 (0.01, 0.05) ng/mL (P=0.006), and the N-terminal pro-brain natriuretic peptide level decreased from preoperative 748.95 (337.40, 1600.75) ng/L to postoperative 367.15 (126.93, 1030.25) ng/L (P<0.001). After surgery, the left atrial diameter of the patients decreased from preoperative (4.18±0.57) cm to postoperative (3.93±0.55) cm (P=0.004), the end-diastolic interventricular septum thickness decreased from preoperative 2.25 (1.90, 2.75) cm to postoperative 1.70 (1.50, 1.90) cm (P<0.001), the left ventricular mass index decreased from preoperative 211.73 (172.28, 261.54) g/m2 to postoperative 156.78 (132.34, 191.36) g/m2 (P<0.001), the left ventricular weight decreased from preoperative 368.89 (292.34, 477.72) g to postoperative 266.62 (224.57, 326.04) g (P<0.001), the end-diastolic posterior wall thickness of the left ventricle decreased from preoperative 1.30 (1.20, 1.60) cm to postoperative 1.20 (1.18, 1.40) cm (P<0.001), the relative wall thickness decreased from preoperative 0.78 (0.78, 1.02) to postoperative 0.63 (0.56, 0.72) (P<0.001), the end-systolic inner diameter of the left ventricle increased from preoperative (2.91±0.50) cm to postoperative (3.19±0.53) cm (P=0.001), and the end-diastolic inner diameter of the left ventricle increased from preoperative (4.41±0.48) cm to postoperative (4.66±0.52) cm (P=0.005). The left ventricular outflow diameter increased from preoperative (1.28±0.46) cm to postoperative (1.57±0.32) cm (P=0.001), the left ventricular outflow pressure gradient decreased from preoperative 58.50 (40.75, 92.50) mm Hg to postoperative 11.50 (7.75, 20.50) mm Hg (P<0.001), the left ventricular ejection fraction increased from preoperative 60.00% (56.75%, 65.00%) to postoperative 63.00% (62.00%, 66.00%) (P=0.024), and the degree of systolic anterior motion of the mitral valve leaflets decreased (P<0.001). Conclusion The cardiac function of patients with HOCM is improved after Liwen surgery, myocardial injury marker levels are decreased, cardiac reverse remodeling occurres, and the surgical outcome is good.
2.PARylation promotes acute kidney injury via RACK1 dimerization-mediated HIF-1α degradation.
Xiangyu LI ; Xiaoyu SHEN ; Xinfei MAO ; Yuqing WANG ; Yuhang DONG ; Shuai SUN ; Mengmeng ZHANG ; Jie WEI ; Jianan WANG ; Chao LI ; Minglu JI ; Xiaowei HU ; Xinyu CHEN ; Juan JIN ; Jiagen WEN ; Yujie LIU ; Mingfei WU ; Jutao YU ; Xiaoming MENG
Acta Pharmaceutica Sinica B 2025;15(9):4673-4691
Poly(ADP-ribosyl)ation (PARylation) is a specific form of post-translational modification (PTM) predominantly triggered by the activation of poly-ADP-ribose polymerase 1 (PARP1). However, the role and mechanism of PARylation in the advancement of acute kidney injury (AKI) remain undetermined. Here, we demonstrated the significant upregulation of PARP1 and its associated PARylation in murine models of AKI, consistent with renal biopsy findings in patients with AKI. This elevation in PARP1 expression might be attributed to trimethylation of histone H3 lysine 4 (H3K4me3). Furthermore, a reduction in PARylation levels mitigated renal dysfunction in the AKI mouse models. Mechanistically, liquid chromatography-mass spectrometry indicated that PARylation mainly occurred in receptor for activated C kinase 1 (RACK1), thereby facilitating its subsequent phosphorylation. Moreover, the phosphorylation of RACK1 enhanced its dimerization and accelerated the ubiquitination-mediated hypoxia inducible factor-1α (HIF-1α) degradation, thereby exacerbating kidney injury. Additionally, we identified a PARP1 proteolysis-targeting chimera (PROTAC), A19, as a PARP1 degrader that demonstrated superior protective effects against renal injury compared with PJ34, a previously identified PARP1 inhibitor. Collectively, both genetic and drug-based inhibition of PARylation mitigated kidney injury, indicating that the PARylated RACK1/HIF-1α axis could be a promising therapeutic target for AKI treatment.
3.A small-molecule anti-cancer drug for long-acting lysosomal damage.
Shulin ZHAO ; Qingjie BAI ; Guimin XUE ; Juan WANG ; Luyao HU ; Xueqian WANG ; Yan LI ; Shuai LU ; Yangang SUN ; Zhiqiang ZHANG ; Yanling MU ; Yanle ZHI ; Qixin CHEN
Acta Pharmaceutica Sinica B 2025;15(11):5867-5879
Lysosomes represent a promising target for cancer therapy and reducing drug resistance. However, the short treatment time and low efficiency of lysosomal targeting have limited the application in lysosome-targeting anticancer drugs. In this study, we proposed an adhesive-bandage approach and synthesized a new lysosomal targeting drug, namely long-term lysosome-targeting anticancer drug (LLAD). It contains a SLC38A9-targeting covalently bound moiety and an alkaline component both to prolong the inhibition of SLC38A9 in lysosomes and alkalinize lysosomes. Upon short term and low-dose treatment of HeLa cells, at passage 0, with LLAD, it rapidly alkalinized lysosomes and also can be detected in lysosomes even at passage 15. LLAD induced apoptosis in HeLa cells through long-term lysosomal damage, and showed better long-term anticancer effect than cisplatin in vivo. Overall, our study paves the way for developing long-term lysosomal targeting drugs to treat cancer and overcome the drug resistance of cancer cells, and also provides a candidate drug, LLAD, for treating cancer.
4.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
6.Exploring the Efficacy of BMSC Transplantation via Various Pathways for Treating Cholestatic Liver Fibrosis in Mice.
Jun Jie REN ; Zi Xu LI ; Xin Rui SHI ; Ting Ting LYU ; Xiao Nan LI ; Min GE ; Qi Zhi SHUAI ; Ting Juan HUANG
Biomedical and Environmental Sciences 2025;38(4):447-458
OBJECTIVE:
To compare the therapeutic efficacy of portal and tail vein transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) against cholestatic liver fibrosis in mice.
METHODS:
BMSCs were isolated and co-cultured with starvation-activated hepatic stellate cells (HSCs). HSC activation markers were identified using immunofluorescence and qRT-PCR. BMSCs were injected into the liver tissues of bile duct ligation (BDL) mice via the tail and portal veins. Histomorphology, liver function, inflammatory cytokines, and the expression of key proteins were all determined in the liver tissues.
RESULTS:
BMSCs inhibited HSC activation by reducing α-SMA and collagen I expression. Compared to tail vein injection, DIL-labeled BMSCs injected through the portal vein maintained a high homing rate in the liver. Moreover, BMSCs transplanted through the portal vein resulted in greater improvement in liver color, hardness, and gallbladder size than did those transplanted through the tail vein. Furthermore, BMSCs injected by portal vein, but not tail vein, markedly ameliorated liver function, reduced the secretion of inflammatory cytokines, including TNF-α, IL-6, and IL-1β, and decreased α-SMA + hepatic stellate cell (HSC) activation and collagen fiber formation.
CONCLUSION
The therapeutic effect of BMSCs on cholestatic liver fibrosis in mice via portal vein transplantation was superior to that of tail vein transplantation. This comparative study provides reference information for further BMSC studies focused on clinical cholestatic liver diseases.
Animals
;
Mice
;
Mesenchymal Stem Cell Transplantation
;
Liver Cirrhosis/etiology*
;
Male
;
Cholestasis/therapy*
;
Mice, Inbred C57BL
;
Hepatic Stellate Cells
;
Mesenchymal Stem Cells
7.The Exquisite Intrinsic Mechanisms of Adverse Health Effects Caused by Overtraining
Shuai-Wei QIAN ; Xian-Juan KOU ; Chun-Yan LI
Progress in Biochemistry and Biophysics 2024;51(8):1750-1770
Overtraining is a condition characterized by various functional disorders or pathological states caused by continuous fatigue, which occurs after a persisting imbalance between training-related load and physical function and recovery. Generally speaking, it’s a state of imbalance between training and recovery, exercise and exercise performance, and stress and stress tolerance. Overtraining can cause various phenotypic changes or pathological remodeling, such as decreased skeletal muscle strength and exhaustive exercise endurance, skeletal muscle fatigue damage and dysfunction, skeletal muscle atrophy and loss, skeletal muscle glycogen depletion, skeletal muscle soreness and stiffness, skeletal muscle glucose intolerance, inattention, memory decline, anxiety, depression, abnormal emotions and behaviors, sleep disorders, cognitive function impairment, poor appetite, weight loss, liver/heart fat deposition, compensatory increase of liver/heart insulin signaling and glycogen storage, cardiac pathological hypertrophy, exercise-induced arrhythmias, myocardial fibrosis, ectopic and visceral fat deposition, and increased risk of injury. Unfortunately, its underlying mechanism is largely unclear. Recently, the enrichment of molecular and cellular signal pathway theory offers us a new explanatory paradigm for revealing its internal mechanisms. Based on the traditional explanation mechanisms and molecular and cellular signal pathway theory, we thoroughly analyzed the key mechanisms of health damage caused by overtraining from the perspective of oxidative stress, mitochondrial quality control disorder, inflammatory response, endoplasmic reticulum stress, cell apoptosis, and so forth. Specifically, overtraining-induced excessive reactive oxygen species (ROS) leads to serious oxidative stress damage in organisms at least via depressing Kelch like ECH associated protein 1(Keap1)/nuclear factor erythroid-2-related factor (Nrf2)/antioxidant response element (ARE) antioxidant pathway and activating p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway. Overtraining induces mitochondrial quality control disorder and mitochondrial dysfunction, and thus triggers health impairment through inhibiting mitochondrial biogenesis and fusion, stimulating mitochondrial fission, and over-activating autophagy/mitophagy. Overtraining can also produce muscle, skeletal and joint trauma, then circulating monocytes are abundantly activated by injury-related cytokines, and in turn generate large quantities of proinflammatory IL-1β, IL-6, TNF‑α, causing systemic inflammation and inflammatory health injury. Overtraining induces excessive pathological endoplasmic reticulum stress (ERS) and severe health damage via PERK-eIF2α, IRE1α-XBP1 and ATF6 pathways which activated by proinflammatory signals. Overtraining also induces excessive apoptosis and harmful health consequences via Bax/Bcl2-Caspase 3-mediated mitoptosis which activated by oxidative stress and inflammation or even CHOP and Caspase 12-dependent ERS apoptosis. Nonetheless, it should be importantly emphasized that oxidative stress and inflammation are the central and pre-emptive mechanisms of overtraining and its health damage. Although the efficient strategies for preventing and controlling overtraining are scientifically and reasonably arranging and planning training intensity, training volume, and recovery period, as well as accurately assessing and monitoring physical function status in the early stage, yet various anti-inflammatory, anti-oxidant, anti-apoptotic, or anti-aging drugs such as curcumin, astaxanthin, oligomeric proanthocyanidins, silibinin, hibiscus sabdariffa, dasatinib, quercetin, hydroxytyrosol, complex probiotics, astragalus polysaccharides, semaglutide and fasudil also have an irreplaceable positive effect on preventing overtraining and its relevant health damage via depressing oxidative stress, mitochondrial quality control disorder, proinflammatory signals, endoplasmic reticulum stress, apoptosis and so on. We hope that this review can help us further grasp the features, mechanisms and regularity of overtraining, and provide an important reference for athletes and sports fan to conduct scientific training, improve training effectiveness, extend exercise lifespan, and promote physical and mental health.
8.Research Progress of Nattokinase Delivery System
Shuai LIU ; Xiaohui RONG ; Shufeng ZHANG ; Lei QU ; Fang LIU ; Juan JING
Chinese Journal of Modern Applied Pharmacy 2024;41(9):1295-1320
Thromboembolic disease seriously affects people's health, and even endangers life. Nattokinase(NK) is an alkaline serine protease with strong thrombolytic activity and low toxicity. However, when NK passes through the stomach, it is degraded by gastric acid and pepsin, and subsequently loses its thrombolytic activity. The application of preparation technology can form a protective layer and improve the high bioavailability of NK. This article briefly introduced the pharmacological properties of NK, and discussed the characteristic of different dosage forms. The development of NK preparation was prospected in order to promote its research and application.
9.The Plant ATG8-binding Proteins
Feng-Juan ZHANG ; Hong-Juan JING ; Guang-Zhou ZHOU ; Shuai-Jia QIN ; Chu-Yan HAN
Progress in Biochemistry and Biophysics 2024;51(6):1371-1381
ATG8-binding proteins play a key role in autophagy, selective autophagy or non-autophagy process by interacting between ATG8 and the ATG8-interacting motif (AIM) or the ubiquitin-interacting motif (UIM). There is great progress of ATG8-binding proteins in yeast and mammalian studies. However, the plant domain is still lagging behind. Therefore, the structure characteristics of plant ATG8 binding protein were firstly outlined. Unlike the single copy of ATG8 gene in yeast, many homologous genes have been identified in plant. The LIR/ AIM-docking site (LDS) of ATG8 protein contains W and L pockets and is responsible for binding to AIM. The ATG8 protein binds to UIM-containing proteins via UIM-docking site (UDS) instead of LDS. UDS is in the opposite position to LDS, so the ATG8 can bind both AIM and UIM proteins. Secondly, the structure and function of ATG8-binding proteins, especially the selective autophagy receptors, were systematically described. The protein NBR1 and Joka2, as proteaphagy receptors, guide ubiquitination protein aggregates to autophagosome for degradation by binding to AIM and ATG8 in Arabidopsis and tobacco, respectively. AtNBR1 also promotes plant immunity by binding the capsid protein of cauliflower mosaic virus and silencing suppressor HCpro of turnip mosaic virus, mediating pathogen autophagy. AtNBR1 still degrades chloroplast by microautophagy under photoinjure or chlorophagy during ibiotic stress. And the protein ORM mediates the degradation of plant immune receptor flagellin sensing 2 (FLS2) through AIM binding to ATG8. Interestingly, ATI1 and ATI2 participate in both chlorophagy and ERphagy. Otherwise, ER membrane protein AtSec62, soluble protein AtC53, and ubiquitin-fold modifier1-specific ligase 1 (UFL1) can be directly bound to ATG8 as ER autophagy receptors. As pexophagy receptor, AtPEX6 and AtPEX10 bind to ATG8 via AIM and participate in pexophagy. RPN10, as a 26S proteasome subunit, whose C-terminal UIM1 and UIM2 bind ubiquitin and ATG8, respectively, mediates the selective autophagy degradation of 26S proteasome inactivation when fully ubiquitinated. Plant-specific mitochondrial localization proteins FCS-like zinc finger (FLZ) and friendly (FMT) may also be mitophagy receptors. CLC2 binds to ATG8 via the AIM-LDS docking site and is recruited to autophagy degradation on the Golgi membrane. The tryptophan-rich sensory protein (TSPO) in Arabidopsis was involved in clearing free heme, porphyrin and plasma membrane intrinsic protein 2;7 (PIP2;7) through the combination of AIM and ATG8. The conformation of GSNOR1 changes during anoxia, exposing the interaction between AIM and ATG8, leading to selective degradation of GSNOR1. At last, the ATG8 binding proteins involved in autophagosome closure, transport and synthetic synthesis was summarized. For example, plant-specific FYVE domain protein required for endosomal sorting 1 (FREE1) is involved in the closure of autophagosomes during nutrient deficiency. Therefore, according to the recent research advances, the structure and function of plant ATG8-binding proteins were systematically summarized in this paper, in order to provide new ideas for the study of plant selective autophagy and autophagy.
10.Association between congenital hypothyroidism and in-hospital adverse outcomes in very low birth weight infants
Sha ZHU ; Jing XU ; Ranran SHI ; Xiaokang WANG ; Maomao SUN ; Shina LI ; Lingling GAO ; Yuanyuan LI ; Huimin WEN ; Changliang ZHAO ; Shuai LI ; Juan JI ; Cuihong YANG ; Yonghui YU
Chinese Journal of Pediatrics 2024;62(1):29-35
Objective:To investigate the association between congenital hypothyroidism (CH) and the adverse outcomes during hospitalization in very low birth weight infants (VLBWI).Methods:This prospective, multicenter observational cohort study was conducted based on the data from the Sino-northern Neonatal Network (SNN). Data of 5 818 VLBWI with birth weight <1 500 g and gestational age between 24-<37 weeks that were admitted to the 37 neonatal intensive care units from January 1 st, 2019 to December 31 st, 2022 were collected and analyzed. Thyroid function was first screened at 7 to 10 days after birth, followed by weekly tests within the first 4 weeks, and retested at 36 weeks of corrected gestational age or before discharge. The VLBWI were assigned to the CH group or non-CH group. Chi-square test, Fisher exact probability method, Wilcoxon rank sum test, univariate and multivariate Logistic regression were used to analyze the relationship between CH and poor prognosis during hospitalization in VLBWI. Results:A total of 5 818 eligible VLBWI were enrolled, with 2 982 (51.3%) males and the gestational age of 30 (29, 31) weeks. The incidence of CH was 5.5% (319 VLBWI). Among the CH group, only 121 VLBWI (37.9%) were diagnosed at the first screening. Univariate Logistic regression analysis showed that CH was associated with increased incidence of extrauterine growth retardation (EUGR) ( OR=1.31(1.04-1.64), P<0.05) and retinopathy of prematurity (ROP) of stage Ⅲ and above ( OR=1.74(1.11-2.75), P<0.05). However, multivariate Logistic regression analysis showed no significant correlation between CH and EUGR, moderate to severe bronchopulmonary dysplasia, grade Ⅲ to Ⅳ intraventricular hemorrhage, neonatal necrotizing enterocolitis in stage Ⅱ or above, and ROP in stage Ⅲ or above ( OR=1.04 (0.81-1.33), 0.79 (0.54-1.15), 1.15 (0.58-2.26), 1.43 (0.81-2.53), 1.12 (0.70-1.80), all P>0.05). Conclusion:There is no significant correlation between CH and in-hospital adverse outcomes, possibly due to timely diagnosis and active replacement therapy.


Result Analysis
Print
Save
E-mail