1.Research on The Role of Dopamine in Regulating Sleep and Wakefulness Through Exercise
Li-Juan HOU ; Ya-Xuan GENG ; Ke LI ; Zhao-Yang HUANG ; Lan-Qun MAO
Progress in Biochemistry and Biophysics 2025;52(1):88-98
Sleep is an instinctive behavior alternating awakening state, sleep entails many active processes occurring at the cellular, circuit and organismal levels. The function of sleep is to restore cellular energy, enhance immunity, promote growth and development, consolidate learning and memory to ensure normal life activities. However, with the increasing of social pressure involved in work and life, the incidence of sleep disorders (SD) is increasing year by year. In the short term, sleep disorders lead to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. There are many ways to directly or indirectly contribute to sleep disorder and keep the hormones, including pharmacological alternative treatments, light therapy and stimulus control therapy. Exercise is also an effective and healthy therapeutic strategy for improving sleep. The intensities, time periods, and different types of exercise have different health benefits for sleep, which can be found through indicators such as sleep quality, sleep efficiency and total sleep time. So it is more and more important to analyze the mechanism and find effective regulation targets during sleep disorder through exercise. Dopamine (DA) is an important neurotransmitter in the nervous system, which not only participates in action initiation, movement regulation and emotion regulation, but also plays a key role in the steady-state remodeling of sleep-awakening state transition. Appreciable evidence shows that sleep disorder on humans and rodents evokes anomalies in the dopaminergic signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Experiments have shown that DA in different neural pathways plays different regulatory roles in sleep behavior, we found that increasing evidence from rodent studies revealed a role for ventral tegmental area DA neurons in regulating sleep-wake patterns. DA signal transduction and neurotransmitter release patterns have complex interactions with behavioral regulation. In addition, experiments have shown that exercise causes changes in DA homeostasis in the brain, which may regulate sleep through different mechanisms, including cAMP response element binding protein signal transduction, changes in the circadian rhythm of biological clock genes, and interactions with endogenous substances such as adenosine, which affect neuronal structure and play a neuroprotective role. This review aims to introduce the regulatory effects of exercise on sleep disorder, especially the regulatory mechanism of DA in this process. The analysis of intracerebral DA signals also requires support from neurophysiological and chemical techniques. Our laboratory has established and developed an in vivo brain neurochemical analysis platform, which provides support for future research on the regulation of sleep-wake cycles by movement. We hope it can provide theoretical reference for the formulation of exercise prescription for clinical sleep disorder and give some advice to the combined intervention of drugs and exercise.
2.Research progress on the mechanism of action of rosmarinic acid in the prevention of cardiovascular diseases
Ke CAI ; Sheng-ru HUANG ; Fang-fang GAO ; Xiu-juan PENG ; Sheng GUO ; Feng LIU ; Jin-ao DUAN ; Shu-lan SU
Acta Pharmaceutica Sinica 2025;60(1):12-21
With the rapid development of social economy and the continuous improvement of human living standard, the incidence, fatality and recurrence rates of cardiovascular disease (CVD) are increasing year by year, which seriously affects people's life and health. Conventional therapeutic drugs have limited improvement on the disability rate, so the search for new therapeutic drugs and action targets has become one of the hotspots of current research. In recent years, the therapeutic role of the natural compound rosmarinic acid (RA) in CVD has attracted much attention, which is capable of preventing CVD by modulating multiple signalling pathways and exerting physiological activities such as antioxidant, anti-apoptotic, anti-inflammatory, anti-platelet aggregation, as well as anti-coagulation and endothelial function protection. In this paper, the role of RA in the prevention of CVD is systematically sorted out, and its mechanism of action is summarised and analysed, with a view to providing a scientific basis and important support for the in-depth exploration of the prevention value of RA in CVD and its further development as a prevention drug.
3.Detection rate and logistic regression analysis of pulmonary infection in patients with acute exacerbation of chronic obstructive pulmonary disease
Yongli XUE ; Juan DU ; Yinzhen SHU ; Lan LIN ; Jun LIU
Journal of Public Health and Preventive Medicine 2025;36(2):43-46
Objective To analyze the detection rate and risk factors of pulmonary infection in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Methods A total of 308 patients with AECOPD hospitalized at the Second Affiliated Hospital of Chengdu Medical College were selected from October 2020 to October 2023 as the research subjects. The incidence of pulmonary infections was analyzed, and univariate and logistic multivariate regression analyses were conducted to identify the risk factors of pulmonary infections. Results Among the 308 patients with AECOPD, 155 cases (50.32%) had pulmonary infection and were selected as the infected group, and 153 cases without pulmonary infection were included in the uninfected group. There were no obvious differences in gender, body mass index, education level, drinking history, hypertension, heart failure and malnutrition between the two groups (P>0.05). There were significant differences between the two groups in age, hospitalization time, mechanical ventilation history, smoking history, glucocorticoid use time, and diabetes mellitus (P<0.05). Logistic analysis showed that the ORs of pulmonary infection risk in AECOPD patients with age ≥ 60 years old, hospitalization time ≥ 14 days, mechanical ventilation history, glucocorticoid use time ≥ 7 days, diabetes mellitus, and smoking history were 2.740 (1.024-7.330), 4.586 (2.318-9.071), 3.971 (1.806-8.731), 3.264 (1.419-7.508), 2.680 (1.012-7.100), and 2.826 (1.156-6.909), respectively. Conclusion The risk of pulmonary infection is high in AECOPD patients, which is influenced by factors such as age, hospitalization time, mechanical ventilation history, smoking history, and glucocorticoid use time. Clinical screening should be focused on the above indicators and active prevention and treatment measures should be taken to reduce the occurrence of pulmonary infection.
4.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
5.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
7.Research progress in the role of HCN channels in Alzheimer's disease.
Xiao-Juan LI ; Bo ZHENG ; Ping LAN ; Wen-Xin ZHANG ; Yi-Peng LI ; Zhi HE
Acta Physiologica Sinica 2025;77(5):867-875
Alzheimer's disease (AD) is the commonest neurodegenerative disease that causes memory decline, cognitive dysfunction and behavior disorders in the aged people. Primary pathological hallmarks of AD include amyloid-β (Aβ), neurofibrillary tangles (NFTs), gliosis, and neuronal loss. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have important physiological functions, especially in aspects of controlling the resting membrane potential, pacemaker activity, memory formation, sleep and arousal. This article reviews the structure, distribution, regulation of HCN channels and the role of HCN channels in the pathological mechanisms of AD, aiming to provide drug therapeutic targets for the prevention and treatment of AD.
Humans
;
Alzheimer Disease/physiopathology*
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology*
;
Animals
;
Amyloid beta-Peptides/metabolism*
8.Prediction of quality markers of Schisandrae Chinensis Fructus in treatment of bronchial asthma based on analytic hierarchy process-entropy weight method, fingerprint and network pharmacology.
Xiao-Hong YANG ; Xue-Mei LAN ; Hui-Juan XIE ; Bin YANG ; Rong-Ping YANG ; Hua LI
China Journal of Chinese Materia Medica 2025;50(4):974-984
In this study, potential quality markers(Q-markers) of Schisandrae Chinensis Fructus for treating bronchial asthma were predicted based on analytic hierarchy process(AHP), entropy weight method(EWM), fingerprint, and network pharmacology. AHPEWM was employed to quantitatively identify the Q-markers of Schisandrae Chinensis Fructus. AHP was used to weight the primary indicators(effectiveness, measurability, and specificity), while EWM was employed to analyze the secondary indicators of each primer indicator. Further, through fingerprint combined with network pharmacology, a ″component-target-pathway″ network was constructed to screen the components of Schisandrae Chinensis Fructus for treating bronchial asthma. It was finally determined that schisandrol A,schisandrin A, and schisandrin B were potential Q-markers of Schisandrae Chinensis Fructus in the treatment of bronchial asthma. This study is the first to comprehensively use AHP-EWM, fingerprint, and network pharmacology to screen the key Q-markers of Schisandrae Chinensis Fructus in the treatment of bronchial asthma. This study provides a scientific basis for improving the quality standard of Schisandrae Chinensis Fructus and lays a foundation for studying its material basis in treating bronchial asthma.
Schisandra/chemistry*
;
Asthma/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Network Pharmacology
;
Humans
;
Entropy
;
Lignans/analysis*
;
Fruit/chemistry*
;
Quality Control
;
Cyclooctanes
;
Polycyclic Compounds/analysis*
9.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
10.Retrospective Analysis of Venetoclax Combined with Azacitidine Compared with "3+7" or Similar Regimens for Newly Diagnosed Patients with Acute Myeloid Leukemia.
Lu-Lu WANG ; Juan ZHANG ; Yue ZHANG ; Yong ZHANG ; Xiao-Min DONG ; Dan-Yang ZHANG ; Ting-Ting CHEN ; Yun-Hui ZHOU ; Teng WANG ; Hui-Ling LAN ; He-Bing ZHOU
Journal of Experimental Hematology 2025;33(3):672-681
OBJECTIVE:
To retrospectively analyze the clinical data of newly diagnosed acute myeloid leukemia (AML) patients treated with venetoclax combined with azacitidine (Ven/Aza) or standard "3+7" regimen and similar regimens, collect real-world study data, compare the treatment response and adverse events between the two regimens, as well as perform survival analysis.
METHODS:
To retrospectively analyze the efficacy, survival, and adverse reactions of newly diagnosed AML patients treated with Ven/Aza (24 cases) and "3+7" regimens (117 cases ) in our hospital from September 2009 to March 2023, as well as factors influencing outcomes. A propensity score matching (PSM) was performed on age and Eastern Cooperative Oncology Group performance status (ECOG PS) to obtain a 1:1 matched cohort of 20 pairs, and the efficacy and survival before and after the matching were compared.
RESULTS:
The median age of patients in the Ven/Aza group was 69 years, while that in the "3+7" group was 56 years (P <0.001). Objective remission rate (ORR) was 62.5% in Ven/Aza group and 74.8% in "3+7" group (P >0.05). The median overall survival (OS) in the Ven/Aza group was 522 days, while that in the "3+7" group was 1 002 days (P >0.05). After controlling the two variables of age and ECOG PS, a PSM cohort of 20 pairs was obtained, in which the ORR was 65% in Ven/Aza group and 60% in "3+7" group (P >0.05). The median OS was 522 days and 629 days, and median progression-free survival (PFS) was 531 days and 198 days between the two groups, respectively. There were no statistically significant differences in OS and PFS between the two groups (both P >0.05). Additionally, the incidence of adverse events in the Ven/Aza group was significantly reduced.
CONCLUSION
The overall cohort shows that the "3+7" regimen has advantages in efficacy and survival, but Ven/Aza regimen is relatively safer. After performing PSM on age and ECOG PS, the Ven/Aza group showed improved efficacy, and a longer median PFS compared to "3+7" group.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Retrospective Studies
;
Sulfonamides/administration & dosage*
;
Azacitidine/administration & dosage*
;
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage*
;
Aged
;
Middle Aged
;
Male
;
Female
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Treatment Outcome


Result Analysis
Print
Save
E-mail