1.Association Between Gut Regulatory Hormones and Post-operative Weight Loss Following Gastrectomy in Patients With Gastric Cancer
Hye-Kyung JUNG ; Chung Hyun TAE ; Hye Ah LEE ; Ko Eun LEE ; Chang Mo MOON ; Seong Eun KIM ; Ju Young SEOH ; Joo-Ho LEE
Journal of Neurogastroenterology and Motility 2022;28(3):409-417
Background/Aims:
Post-operative weight loss in patients with gastric cancer lead to a poor quality of life and long-term survival. This study aims to evaluate the effects of gut regulatory hormones on post-operative weight loss in patients with subtotal gastrectomy for gastric cancer.
Methods:
This prospective study was conducted for 12 months post-surgery in 14 controls and 13 gastrectomy patients who underwent subtotal gastrectomy for gastric cancer. Serum plasma ghrelin, glucagon-like peptide-1, gastric inhibitory peptide-1, peptide YY, insulin, and homeostatic model assessment for insulin resistance responses to a standardized test meal were recorded at multiple time points before and after gastrectomy at 4 and 12 months.
Results:
The mean weight difference between the pre-operative state and the 4-month period was significantly reduced to 6.6 kg (P = 0.032), but significant weight reduction was not observed from 4 months to 12 months. The plasma levels of glucagon-like peptide-1, gastric inhibitory peptide-1, and peptide YY were significantly increased 4 months postoperatively compared to the pre-operative state (all P= 0.035); however, pre-operative levels and relative changes over a period of 0-4 months of hormones were not correlated with body weight changes. Only the pre-operative ghrelin at peak had a negative correlation with changes in weight reduction in the 4 months after surgery (P = −0.8, P = 0.024).
Conclusions
Significant weight reduction was common after subtotal gastrectomy for gastric cancer with a negative correlation pre-operative plasma ghrelin levels. Incretin hormones are modestly but significantly increased after subtotal gastrectomy; however, these changes did not affect the weight changes.
2.Hyperoxygenation Ameliorates Stress-induced Neuronal and Behavioral Deficits
Juli CHOI ; Hye-Jin KWON ; Ju-Young SEOH ; Pyung-Lim HAN
Experimental Neurobiology 2021;30(6):415-429
Hyperoxygenation therapy remediates neuronal injury and improves cognitive function in various animal models. In the present study, the optimal conditions for hyperoxygenation treatment of stress-induced maladaptive changes were investigated. Mice exposed to chronic restraint stress (CRST) produce persistent adaptive changes in genomic responses and exhibit depressive-like behaviors. Hyperoxygenation treatment with 100% O2 (HO2 ) at 2.0 atmospheres absolute (ATA) for 1 h daily for 14 days in CRST mice produces an antidepressive effect similar to that of the antidepressant imipramine. In contrast, HO2 treatment at 2.0 ATA for 1 h daily for shorter duration (3, 5, or 7 days), HO2 treatment at 1.5 ATA for 1 h daily for 14 days, or hyperbaric air treatment at 2.0 ATA (42% O2 ) for 1 h daily for 14 days is ineffective or less effective, indicating that repeated sufficient hyperoxygenation conditions are required to reverse stress-induced maladaptive changes. HO2 treatment at 2.0 ATA for 14 days restores stress-induced reductions in levels of mitochondrial copy number, stress-induced attenuation of synaptophysin-stained density of axon terminals and MAP-2-staining dendritic processes of pyramidal neurons in the hippocampus, and stress-induced reduced hippocampal neurogenesis. These results suggest that HO2 treatment at 2.0 ATA for 14 days is effective to ameliorate stress-induced neuronal and behavioral deficits.
3.Rapid Assessment of Microbiota Changes in Individuals with Autism Spectrum Disorder Using Bacteria-derived Membrane Vesicles in Urine.
Yunjin LEE ; Jin Young PARK ; Eun Hwa LEE ; Jinho YANG ; Bo Ri JEONG ; Yoon Keun KIM ; Ju Young SEOH ; SoHyun LEE ; Pyung Lim HAN ; Eui Jung KIM
Experimental Neurobiology 2017;26(5):307-317
Individuals with autism spectrum disorder (ASD) have altered gut microbiota, which appears to regulate ASD symptoms via gut microbiota-brain interactions. Rapid assessment of gut microbiota profiles in ASD individuals in varying physiological contexts is important to understanding the role of the microbiota in regulating ASD symptoms. Microbiomes secrete extracellular membrane vesicles (EVs) to communicate with host cells and secreted EVs are widely distributed throughout the body including the blood and urine. In the present study, we investigated whether bacteria-derived EVs in urine are useful for the metagenome analysis of microbiota in ASD individuals. To address this, bacterial DNA was isolated from bacteria-derived EVs in the urine of ASD individuals. Subsequent metagenome analysis indicated markedly altered microbiota profiles at the levels of the phylum, class, order, family, and genus in ASD individuals relative to control subjects. Microbiota identified from urine EVs included gut microbiota reported in previous studies and their up- and down-regulation in ASD individuals were partially consistent with microbiota profiles previously assessed from ASD fecal samples. However, overall microbiota profiles identified in the present study represented a distinctive microbiota landscape for ASD. Particularly, the occupancy of g_Pseudomonas, g_Sphingomonas, g_Agrobacterium, g_Achromobacter, and g_Roseateles decreased in ASD, whereas g_Streptococcus, g_Akkermansia, g_Rhodococcus, and g_Halomonas increased. These results demonstrate distinctively altered gut microbiota profiles in ASD, and validate the utilization of urine EVs for the rapid assessment of microbiota in ASD.
Autism Spectrum Disorder*
;
Autistic Disorder*
;
DNA, Bacterial
;
Down-Regulation
;
Gastrointestinal Microbiome
;
Humans
;
Membranes*
;
Metagenome
;
Microbiota*
4.Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.
Seon Hee KIM ; Young An BAE ; Ju Young SEOH ; Hyun Jong YANG
The Korean Journal of Parasitology 2017;55(3):255-265
Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium. Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii-infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.
Animals
;
Anopheles
;
Antibodies
;
Clone Cells
;
Coinfection
;
Communicable Diseases
;
Culicidae
;
Humans
;
Immunity, Humoral
;
Life Cycle Stages
;
Malaria
;
Merozoite Surface Protein 1*
;
Mice
;
Mice, Inbred ICR
;
Parasitemia
;
Parasites
;
Plasmodium yoelii*
;
Plasmodium*
;
Rodentia
;
Sporozoites
;
Vaccines
5.Phenotypic and Functional Analysis of HL-60 Cells Used in Opsonophagocytic-Killing Assay for Streptococcus pneumoniae.
Kyung Hyo KIM ; Ju Young SEOH ; Su Jin CHO
Journal of Korean Medical Science 2015;30(2):145-150
Differentiated HL-60 is an effector cell widely used for the opsonophagocytic-killing assay (OPKA) to measure efficacy of pneumococcal vaccines. We investigated the correlation between phenotypic expression of immunoreceptors and phagocytic ability of HL-60 cells differentiated with N,N-dimethylformamide (DMF), all-trans retinoic acid (ATRA), or 1alpha, 25-dihydroxyvitamin D3 (VitD3) for 5 days. Phenotypic change was examined by flow cytometry with specific antibodies to CD11c, CD14, CD18, CD32, and CD64. Apoptosis was determined by flow cytometry using 7-aminoactinomycin D. Function was evaluated by a standard OPKA against serotype 19F and chemiluminescence-based respiratory burst assay. The expression of CD11c and CD14 gradually increased upon exposure to all three agents, while CD14 expression increased abruptly after VitD3. The expression of CD18, CD32, and CD64 increased during differentiation with all three agents. Apoptosis remained less than 10% until day 3 but increased after differentiation by DMF or ATRA. Differentiation with ATRA or VitD3 increased the respiratory burst after day 4. DMF differentiation showed a high OPKA titer at day 1 which sustained thereafter while ATRA or VitD3-differentiated cells gradually increased. Pearson analysis between the phenotypic changes and OPKA titers suggests that CD11c might be a useful differentiation marker for HL-60 cells for use in pneumococcal OPKA.
Antibodies, Bacterial/immunology
;
Antigens, CD11c/metabolism
;
Antigens, CD14/metabolism
;
Antigens, CD18/metabolism
;
Apoptosis/*immunology
;
Biological Assay
;
Cell Differentiation
;
Cell Line, Tumor
;
Cholecalciferol/pharmacology
;
Dimethylformamide/pharmacology
;
Flow Cytometry
;
HL-60 Cells
;
Humans
;
Phagocytosis/*immunology
;
Pneumococcal Vaccines/*immunology
;
Receptors, IgG/metabolism
;
Receptors, Immunologic/*biosynthesis
;
Respiratory Burst/immunology
;
Streptococcus pneumoniae/*immunology
;
Tretinoin/pharmacology
6.Phenotypic and Functional Analysis of HL-60 Cells Used in Opsonophagocytic-Killing Assay for Streptococcus pneumoniae.
Kyung Hyo KIM ; Ju Young SEOH ; Su Jin CHO
Journal of Korean Medical Science 2015;30(2):145-150
Differentiated HL-60 is an effector cell widely used for the opsonophagocytic-killing assay (OPKA) to measure efficacy of pneumococcal vaccines. We investigated the correlation between phenotypic expression of immunoreceptors and phagocytic ability of HL-60 cells differentiated with N,N-dimethylformamide (DMF), all-trans retinoic acid (ATRA), or 1alpha, 25-dihydroxyvitamin D3 (VitD3) for 5 days. Phenotypic change was examined by flow cytometry with specific antibodies to CD11c, CD14, CD18, CD32, and CD64. Apoptosis was determined by flow cytometry using 7-aminoactinomycin D. Function was evaluated by a standard OPKA against serotype 19F and chemiluminescence-based respiratory burst assay. The expression of CD11c and CD14 gradually increased upon exposure to all three agents, while CD14 expression increased abruptly after VitD3. The expression of CD18, CD32, and CD64 increased during differentiation with all three agents. Apoptosis remained less than 10% until day 3 but increased after differentiation by DMF or ATRA. Differentiation with ATRA or VitD3 increased the respiratory burst after day 4. DMF differentiation showed a high OPKA titer at day 1 which sustained thereafter while ATRA or VitD3-differentiated cells gradually increased. Pearson analysis between the phenotypic changes and OPKA titers suggests that CD11c might be a useful differentiation marker for HL-60 cells for use in pneumococcal OPKA.
Antibodies, Bacterial/immunology
;
Antigens, CD11c/metabolism
;
Antigens, CD14/metabolism
;
Antigens, CD18/metabolism
;
Apoptosis/*immunology
;
Biological Assay
;
Cell Differentiation
;
Cell Line, Tumor
;
Cholecalciferol/pharmacology
;
Dimethylformamide/pharmacology
;
Flow Cytometry
;
HL-60 Cells
;
Humans
;
Phagocytosis/*immunology
;
Pneumococcal Vaccines/*immunology
;
Receptors, IgG/metabolism
;
Receptors, Immunologic/*biosynthesis
;
Respiratory Burst/immunology
;
Streptococcus pneumoniae/*immunology
;
Tretinoin/pharmacology
7.Plasmodium falciparum Cultivation Using the Petri Dish: Revisiting the Effect of the 'Age' of Erythrocytes and the Interval of Medium Change.
Young A KIM ; Je Eun CHA ; Sun Young AHN ; Seung Ho RYU ; Joon Sup YEOM ; Hyo Il LEE ; Chang Gyun KIM ; Ju Young SEOH ; Jae Won PARK
Journal of Korean Medical Science 2007;22(6):1022-1025
Differences in the characteristics of the culture conditions can influence the multiplication rate of Plasmodium falciparum. The Petri dish method is one of the most popular methods of cultivating this parasite. In many previous studies, ideal culture conditions of the Petri dish method were achieved by using erythrocytes collected from blood that had been stored for at least 2 weeks, with daily changes of the medium. In the present study, we studied the multiplication rate of P. falciparum in cultures containing erythrocytes of various ages together with changing the medium at various intervals of time. Our results strongly suggest that the rate of in vitro multiplication of P. falciparum was higher in freshly collected erythrocytes than in aged erythrocytes regardless of the anticoagulant and that when the parasitemia is lower than 8% with a hematocrit of 5%, the medium change interval can be as long as 48 hr without a great reduction in the rate of multiplication.
Animals
;
Blood Specimen Collection
;
Cell Aging
;
Culture Media
;
Erythrocytes/*parasitology
;
Plasmodium falciparum/*growth & development
;
Time Factors
8.Hepatocyte Growth Factor is the Key Cytokine in Stimulating Potential Stem Cells in the Cord Blood into Hepatic Lineage Cells.
Kyung Ha RYU ; Su Jin CHO ; So Youn WOO ; Ju Young SEOH ; Yun Jae JUNG ; Ho Seong HAN
Immune Network 2007;7(3):117-123
BACKGROUND: This study was designed to investigate the role of the hepatocyte growth factor (HGF) with regards to differentiation of somatic stem cells originating from the human umbilical cord blood (UCB) into hepatic lineage cells in vitro culture system. METHODS: Mononuclear cells from UCB were cultured with and without HGF based on the fibroblast growth factor (FGF)-1, FGF-2, and stem cell factor. The cultured cells were confirmed by immunofluorescent staining analysis with albumin (ALB), cytokeratin-19 (CK-19), and proliferating cell nuclear antigen (PCNA) MoAb. ALB and CK-18 mRNA were also evaluated by reverse transcription-polymerase chain reaction. In order to observe changes in proliferating capacity with respect to the cultured period, CFSE with affinity to proliferating cells were tagged and later underwent flow cytometry. RESULTS: In the HGF-treated group, cultured cells had a large oval shaped appearance with adherent, but easily detachable characteristics. In the HGF-non treated group, these cells were spindle-shaped with strong adherent characteristics. Expressions of ALB and CK-19 were evident in HGF-treated group compared to non-expression of those in to HGF-non treated group. Dual immunostaining analysis of the ALB producing cells showed presence of PCNA in their nuclei, and ALB and CK-18 mRNA were detected on the 21st day of cultured cells in the HGF-treated group. CONCLUSION: Our findings suggest that HGF has a pivotal role in differentiating somatic stem cells of human UCB into hepatic lineage cells in vitro.
Cells, Cultured
;
Fetal Blood*
;
Fibroblast Growth Factor 2
;
Fibroblast Growth Factors
;
Flow Cytometry
;
Hepatocyte Growth Factor*
;
Hepatocytes*
;
Humans
;
Keratin-19
;
Proliferating Cell Nuclear Antigen
;
RNA, Messenger
;
Stem Cell Factor
;
Stem Cells*
9.Investigation of Chemotactic Activities in Differentiated HL-60 Cells by a Time-lapse Videomicroscopic Assay.
Yun Jae JUNG ; So Youn WOO ; Kyung Ha RYU ; Myoung Ho JANG ; Masayuki MIYASAKA ; Ju Young SEOH
Immune Network 2006;6(2):76-85
BACKGROUND: Chemotaxis is one of the cardinal functions of leukocytes, which enables them to be recruited efficiently to the right place at the right time. Analyzing chemotactic activities is important not only for the study on leukocyte migration but also for many other applications including development of new drugs interfering with the chemotactic process. However, there are many technical limitations in the conventional in vitro chemotaxis assays. Here we applied a new optical assay to investigate chemotactic activities induced in differentiated HL-60 cells. METHODS: HL-60 cells were stimulated with 0.8% dimethylformamide (DMF) for 4 days. The cells were analyzed for morphology, flow cytometry as well as chemotactic activities by a time-lapse videomicroscopic assay using a chemotactic microchamber bearing a fibronectin-coated cover slip and an etched silicon chip. RESULTS: Videomicroscopic observation of the real cellular motions in a stable concentration gradient of chemokines demonstrated that HL-60 cells showed chemotaxis to inflammatory chemokines (CCL3, CCL5 and CXCL8) and also a homeostatic chemokine (CXCL12) after DFM-induced differentiation to granulocytic cells. The cells moved randomly at a speed of 6.99+/-1.24 micrometer/min (n=100) in the absence of chemokine. Chemokine stimulation induced directional migration of differentiated HL-60 cells, while they still wandered very much and significantly increased the moving speeds. CONCLUSION: The locomotive patterns of DMF-stimulated HL-60 cells can be analyzed in detail throughout the course of chemotaxis by the use of a time-lapse videomicroscopic assay. DMF-stimulated HL-60 cells may provide a convenient in vitro model for chemotactic studies of neutrophils.
Chemokines
;
Chemotaxis
;
Dimethylformamide
;
Flow Cytometry
;
HL-60 Cells*
;
Humans
;
Leukocytes
;
Microscopy, Video
;
Neutrophils
;
Silicon
10.Antitumor Effects of Arsenic Trioxide on Neuroblastoma.
Kyung Ha RYU ; So Youn WOO ; Ju Young SEOH ; Chong Jai KIM ; Hee Young SHIN ; Hyo Seop AHN
Korean Journal of Pediatric Hematology-Oncology 2003;10(1):64-71
PURPOSE: We aimed to study the feasibility of arsenic trioxide as a treatment of neuroblastoma which has the ability to differentiate into nonmalignant cells like acute promyelocytic leukemia. METHODS: To determine the effects of arsenic trioxide in various concentrations and exposure time on the survivial of neuroblastoma cell lines, SH-SY5Y and SK-N-AS cells were cultured in RPMI 1640 media with 1 to 20muM concentration of arsenic trioxide. Apoptosis was measured with flow cytometry by staining with 7-aminoactinomycin D. Cell cycle was assessed by monitoring the DNA contents by flow cytometry. Arsenic trioxide induced cell morphologic changes were also observed with May-Grunwald-Giemsa stain under a light microscope. RESULTS: Arsenic trioxide induced apoptosis in SH-SY5Y cells earlier in the same concentration and to a more severe degree with the same exposure time than in HL-60 cells. The apoptosis induced by arsenic trioxide was steeply increased to 79.3 10.1% at 24 hours and then maintained a plateau on 20muM concentration, while increasing steadily to 40.2 6.5% until 72 hours on 5muM concentration. The proliferating cell proportion in S/G2/M phase was decreased with arsenic trioxide concentration and with exposure time in both SH-SY5Y and HL-60 cells, especially more so with the SH-SY5Y cells. The cellularity was decreased and more apoptotic cells could be observed in the arsenic trioxide treatment group than in untreated control group. CONCLUSION: As in acute promyelocytic leukemic cells, arsenic trioxide induced apoptosis and cell cycle arrest of proliferating phase in neuroblastoma cells.
Apoptosis
;
Arsenic*
;
Cell Cycle
;
Cell Cycle Checkpoints
;
Cell Line
;
DNA
;
Flow Cytometry
;
HL-60 Cells
;
Humans
;
Leukemia, Promyelocytic, Acute
;
Neuroblastoma*

Result Analysis
Print
Save
E-mail