1.Relationship between the Geriatric Nutrition Risk Index and the Prognosis of Severe Coronavirus Disease 2019 in Korea
Hye Ju YEO ; Daesup LEE ; Mose CHUN ; Jin Ho JANG ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Tae Hwa KIM ; Woo Hyun CHO
Tuberculosis and Respiratory Diseases 2025;88(2):369-379
Background:
Malnutrition exacerbates the prognosis of numerous diseases; however, its specific impact on severe coronavirus disease 2019 (COVID-19) outcomes remains insufficiently explored.
Methods:
This multicenter study in Korea evaluated the nutritional status of 1,088 adults with severe COVID-19 using the Geriatric Nutritional Risk Index (GNRI) based on serum albumin levels and body weight. The patients were categorized into two groups: GNRI >98 (no-risk) and GNRI ≤98 (risk). Propensity score matching, adjusted for demographic and clinical variables, was conducted.
Results:
Of the 1,088 patients, 642 (59%) were classified as at risk of malnutrition. Propensity score matching revealed significant disparities in hospital (34.3% vs. 19.4%, p<0.001) and intensive care unit (ICU) mortality (31.5% vs. 18.9%, p<0.001) between the groups. The risk group was associated with a higher hospital mortality rate in the multivariate Cox regression analyses following propensity score adjustment (hazard ratio [HR], 1.64; p=0.001). Among the 670 elderly patients, 450 were at risk of malnutrition. Furthermore, the risk group demonstrated significantly higher hospital (52.1% vs. 29.5%, p<0.001) and ICU mortality rates (47.2% vs. 29.1%, p<0.001). The risk group was significantly associated with increased hospital mortality rates in the multivariate analyses following propensity score adjustment (HR, 1.66; p=0.001).
Conclusion
Malnutrition, as indicated by a low GNRI, was associated with increased mortality in patients with severe COVID-19. This effect was also observed in the elderly population. These findings underscore the critical importance of nutritional assessment and effective interventions for patients with severe COVID-19.
2.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
3.Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2022
Eun Hye PARK ; Kyu-Won JUNG ; Nam Ju PARK ; Mee Joo KANG ; E Hwa YUN ; Hye-Jin KIM ; Jeong-Eun KIM ; Hyun-Joo KONG ; Kui-Son CHOI ; Han-Kwang YANG ;
Cancer Research and Treatment 2025;57(2):312-330
Purpose:
The current study provides national cancer statistics and their secular trends in Korea, including incidence, mortality, survival, and prevalence in 2022, with international comparisons.
Materials and Methods:
Cancer incidence, survival, and prevalence rates were calculated using the Korea National Cancer Incidence Database (1999-2022), with survival follow-up until December 31, 2023. Mortality data obtained from Statistics Korea, while international comparisons were based on GLOBOCAN data.
Results:
In 2022, 282,047 newly diagnosed cancer cases (age-standardized rate [ASR], 287.0 per 100,000) and 83,378 deaths from cancer (ASR, 65.7 per 100,000) were reported. The proportion of localized-stage cancers increased from 45.6% in 2005 to 50.9% in 2022. Stomach, colorectal, and breast cancer showed increased localized-stage diagnoses by 18.1, 18.5, and 9.9 percentage points, respectively. Compared to 2001-2005, the 5-year relative survival (2018-2022) increased by 20.4 percentage points for stomach cancer, 7.6 for colorectal cancer, and 5.6 for breast cancer. Korea had the lowest cancer mortality among countries with similar incidence rates and the lowest mortality-to-incidence (M/I) ratios for these cancers. The 5-year relative survival (2018-2022) was 72.9%, contributing to over 2.59 million prevalent cases in 2022.
Conclusion
Since the launch of the National Cancer Screening Program in 2002, early detection has improved, increasing the diagnosis of localized-stage cancers and survival rates. Korea recorded the lowest M/I ratio among major comparison countries, demonstrating the effectiveness of its National Cancer Control Program.
4.Relationship between the Geriatric Nutrition Risk Index and the Prognosis of Severe Coronavirus Disease 2019 in Korea
Hye Ju YEO ; Daesup LEE ; Mose CHUN ; Jin Ho JANG ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Tae Hwa KIM ; Woo Hyun CHO
Tuberculosis and Respiratory Diseases 2025;88(2):369-379
Background:
Malnutrition exacerbates the prognosis of numerous diseases; however, its specific impact on severe coronavirus disease 2019 (COVID-19) outcomes remains insufficiently explored.
Methods:
This multicenter study in Korea evaluated the nutritional status of 1,088 adults with severe COVID-19 using the Geriatric Nutritional Risk Index (GNRI) based on serum albumin levels and body weight. The patients were categorized into two groups: GNRI >98 (no-risk) and GNRI ≤98 (risk). Propensity score matching, adjusted for demographic and clinical variables, was conducted.
Results:
Of the 1,088 patients, 642 (59%) were classified as at risk of malnutrition. Propensity score matching revealed significant disparities in hospital (34.3% vs. 19.4%, p<0.001) and intensive care unit (ICU) mortality (31.5% vs. 18.9%, p<0.001) between the groups. The risk group was associated with a higher hospital mortality rate in the multivariate Cox regression analyses following propensity score adjustment (hazard ratio [HR], 1.64; p=0.001). Among the 670 elderly patients, 450 were at risk of malnutrition. Furthermore, the risk group demonstrated significantly higher hospital (52.1% vs. 29.5%, p<0.001) and ICU mortality rates (47.2% vs. 29.1%, p<0.001). The risk group was significantly associated with increased hospital mortality rates in the multivariate analyses following propensity score adjustment (HR, 1.66; p=0.001).
Conclusion
Malnutrition, as indicated by a low GNRI, was associated with increased mortality in patients with severe COVID-19. This effect was also observed in the elderly population. These findings underscore the critical importance of nutritional assessment and effective interventions for patients with severe COVID-19.
5.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
6.Relationship between the Geriatric Nutrition Risk Index and the Prognosis of Severe Coronavirus Disease 2019 in Korea
Hye Ju YEO ; Daesup LEE ; Mose CHUN ; Jin Ho JANG ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Tae Hwa KIM ; Woo Hyun CHO
Tuberculosis and Respiratory Diseases 2025;88(2):369-379
Background:
Malnutrition exacerbates the prognosis of numerous diseases; however, its specific impact on severe coronavirus disease 2019 (COVID-19) outcomes remains insufficiently explored.
Methods:
This multicenter study in Korea evaluated the nutritional status of 1,088 adults with severe COVID-19 using the Geriatric Nutritional Risk Index (GNRI) based on serum albumin levels and body weight. The patients were categorized into two groups: GNRI >98 (no-risk) and GNRI ≤98 (risk). Propensity score matching, adjusted for demographic and clinical variables, was conducted.
Results:
Of the 1,088 patients, 642 (59%) were classified as at risk of malnutrition. Propensity score matching revealed significant disparities in hospital (34.3% vs. 19.4%, p<0.001) and intensive care unit (ICU) mortality (31.5% vs. 18.9%, p<0.001) between the groups. The risk group was associated with a higher hospital mortality rate in the multivariate Cox regression analyses following propensity score adjustment (hazard ratio [HR], 1.64; p=0.001). Among the 670 elderly patients, 450 were at risk of malnutrition. Furthermore, the risk group demonstrated significantly higher hospital (52.1% vs. 29.5%, p<0.001) and ICU mortality rates (47.2% vs. 29.1%, p<0.001). The risk group was significantly associated with increased hospital mortality rates in the multivariate analyses following propensity score adjustment (HR, 1.66; p=0.001).
Conclusion
Malnutrition, as indicated by a low GNRI, was associated with increased mortality in patients with severe COVID-19. This effect was also observed in the elderly population. These findings underscore the critical importance of nutritional assessment and effective interventions for patients with severe COVID-19.
7.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
8.Risk Factors of FEV 1 /FVC Decline in COPD Patients
Na Young KIM ; Deog Kyeom KIM ; Shinhee PARK ; Yong Il HWANG ; Hyewon SEO ; Dongil PARK ; Seoung Ju PARK ; Jin Hwa LEE ; Kwang Ha YOO ; Hyun Woo LEE
Journal of Korean Medical Science 2025;40(6):e32-
Background:
Factors influencing the decline in forced expiratory volume in one second (FEV1 )/forced vital capacity (FVC) for chronic obstructive pulmonary disease (COPD) progression remain uncertain. We aimed to identify risk factors associated with rapid FEV1 / FVC decline in patients with COPD.
Methods:
This multi-center observational study was conducted from January 2012 to December 2022. Eligible patients were monitored with symptoms, spirometric tests, and treatment patterns over 3 years. Rapid FEV1 /FVC decliners were defined as the quartile of patients exhibiting the highest annualized percentage decline in FEV1 /FVC.
Results:
Among 1,725 patients, 435 exhibited rapid FEV1 /FVC decline, with an annual change of −2.5%p (interquartile range, −3.5 to −2.0). Rapid FEV1 /FVC decliners exhibited lower body mass index (BMI), higher smoking rates, elevated post-bronchodilator (BD) FEV1 , higher post-BD FEV1 / FVC, and a lower prevalence of Staging of Airflow Obstruction by Ratio (STAR) stage IV. Rapid FEV1 /FVC decline was not linked to the annual exacerbation rate, but there was an association with symptom deterioration and FEV1 decline. In multivariable analyses, low BMI, current smoking, increased modified Medical Research Council dyspnoea score, low post-BD FEV1 , low STAR stage, high forced mid-expiratory flow (FEF 25-75% ), accelerated FEV1 decline, and not initiating dual BD therapy were identified as independent risk factors for rapid FEV1 /FVC decline.
Conclusion
We identified the risk factors for rapid FEV1 /FVC decline, including BMI, smoking, symptoms deterioration, FEV1 decline, and adherence to standard inhaler treatment. Our findings underscore the potential benefits of maintaining consistent use of long-acting beta-agonist/long-acting muscarinic antagonist even in the presence of worsening symptoms, in attenuating FEV1 /FVC decline.
9.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
10.Risk Factors of FEV 1 /FVC Decline in COPD Patients
Na Young KIM ; Deog Kyeom KIM ; Shinhee PARK ; Yong Il HWANG ; Hyewon SEO ; Dongil PARK ; Seoung Ju PARK ; Jin Hwa LEE ; Kwang Ha YOO ; Hyun Woo LEE
Journal of Korean Medical Science 2025;40(6):e32-
Background:
Factors influencing the decline in forced expiratory volume in one second (FEV1 )/forced vital capacity (FVC) for chronic obstructive pulmonary disease (COPD) progression remain uncertain. We aimed to identify risk factors associated with rapid FEV1 / FVC decline in patients with COPD.
Methods:
This multi-center observational study was conducted from January 2012 to December 2022. Eligible patients were monitored with symptoms, spirometric tests, and treatment patterns over 3 years. Rapid FEV1 /FVC decliners were defined as the quartile of patients exhibiting the highest annualized percentage decline in FEV1 /FVC.
Results:
Among 1,725 patients, 435 exhibited rapid FEV1 /FVC decline, with an annual change of −2.5%p (interquartile range, −3.5 to −2.0). Rapid FEV1 /FVC decliners exhibited lower body mass index (BMI), higher smoking rates, elevated post-bronchodilator (BD) FEV1 , higher post-BD FEV1 / FVC, and a lower prevalence of Staging of Airflow Obstruction by Ratio (STAR) stage IV. Rapid FEV1 /FVC decline was not linked to the annual exacerbation rate, but there was an association with symptom deterioration and FEV1 decline. In multivariable analyses, low BMI, current smoking, increased modified Medical Research Council dyspnoea score, low post-BD FEV1 , low STAR stage, high forced mid-expiratory flow (FEF 25-75% ), accelerated FEV1 decline, and not initiating dual BD therapy were identified as independent risk factors for rapid FEV1 /FVC decline.
Conclusion
We identified the risk factors for rapid FEV1 /FVC decline, including BMI, smoking, symptoms deterioration, FEV1 decline, and adherence to standard inhaler treatment. Our findings underscore the potential benefits of maintaining consistent use of long-acting beta-agonist/long-acting muscarinic antagonist even in the presence of worsening symptoms, in attenuating FEV1 /FVC decline.

Result Analysis
Print
Save
E-mail