1.Toxicological evidence integration to confirm the biological plausibility of the association between humidifier disinfectant exposure and respiratory diseases using the AEP-AOP framework
Ha Ryong KIM ; Jun Woo KIM ; Jong-Hyeon LEE ; Younghee KIM ; Jungyun LIM ; Yong-Wook BAEK ; Sunkyoung SHIN ; Mina HA ; Hae-Kwan CHEONG ; Kyu Hyuck CHUNG ;
Epidemiology and Health 2024;46(1):e2024060-
OBJECTIVES:
Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease.
METHODS:
We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into three lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway–adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases.
RESULTS:
By integrating toxicological evidence for each component of the AEP-AOP framework for PHMG and CMIT/MIT, we developed an AEP-AOP model that elucidates how disinfectants released from humidifiers expose target sites, triggering molecular initiating events and key events that ultimately lead to respiratory damage. This model exhibits high reliability and relevance to the pathogenesis of respiratory diseases.
CONCLUSIONS
The AEP-AOP model developed in this study provides strong evidence, based on evidence-based toxicology, that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.
2.Toxicological evidence integration to confirm the biological plausibility of the association between humidifier disinfectant exposure and respiratory diseases using the AEP-AOP framework
Ha Ryong KIM ; Jun Woo KIM ; Jong-Hyeon LEE ; Younghee KIM ; Jungyun LIM ; Yong-Wook BAEK ; Sunkyoung SHIN ; Mina HA ; Hae-Kwan CHEONG ; Kyu Hyuck CHUNG ;
Epidemiology and Health 2024;46(1):e2024060-
OBJECTIVES:
Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease.
METHODS:
We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into three lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway–adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases.
RESULTS:
By integrating toxicological evidence for each component of the AEP-AOP framework for PHMG and CMIT/MIT, we developed an AEP-AOP model that elucidates how disinfectants released from humidifiers expose target sites, triggering molecular initiating events and key events that ultimately lead to respiratory damage. This model exhibits high reliability and relevance to the pathogenesis of respiratory diseases.
CONCLUSIONS
The AEP-AOP model developed in this study provides strong evidence, based on evidence-based toxicology, that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.
3.Toxicological evidence integration to confirm the biological plausibility of the association between humidifier disinfectant exposure and respiratory diseases using the AEP-AOP framework
Ha Ryong KIM ; Jun Woo KIM ; Jong-Hyeon LEE ; Younghee KIM ; Jungyun LIM ; Yong-Wook BAEK ; Sunkyoung SHIN ; Mina HA ; Hae-Kwan CHEONG ; Kyu Hyuck CHUNG ;
Epidemiology and Health 2024;46(1):e2024060-
OBJECTIVES:
Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease.
METHODS:
We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into three lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway–adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases.
RESULTS:
By integrating toxicological evidence for each component of the AEP-AOP framework for PHMG and CMIT/MIT, we developed an AEP-AOP model that elucidates how disinfectants released from humidifiers expose target sites, triggering molecular initiating events and key events that ultimately lead to respiratory damage. This model exhibits high reliability and relevance to the pathogenesis of respiratory diseases.
CONCLUSIONS
The AEP-AOP model developed in this study provides strong evidence, based on evidence-based toxicology, that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.
4.Toxicological evidence integration to confirm the biological plausibility of the association between humidifier disinfectant exposure and respiratory diseases using the AEP-AOP framework
Ha Ryong KIM ; Jun Woo KIM ; Jong-Hyeon LEE ; Younghee KIM ; Jungyun LIM ; Yong-Wook BAEK ; Sunkyoung SHIN ; Mina HA ; Hae-Kwan CHEONG ; Kyu Hyuck CHUNG ;
Epidemiology and Health 2024;46(1):e2024060-
OBJECTIVES:
Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease.
METHODS:
We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into three lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway–adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases.
RESULTS:
By integrating toxicological evidence for each component of the AEP-AOP framework for PHMG and CMIT/MIT, we developed an AEP-AOP model that elucidates how disinfectants released from humidifiers expose target sites, triggering molecular initiating events and key events that ultimately lead to respiratory damage. This model exhibits high reliability and relevance to the pathogenesis of respiratory diseases.
CONCLUSIONS
The AEP-AOP model developed in this study provides strong evidence, based on evidence-based toxicology, that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.
5.Clinical Effect of Endosonography on Overall Survival in Patients with Radiological N1 Non–Small Cell Lung Cancer
Bo-Guen KIM ; Byeong-Ho JEONG ; Goeun PARK ; Hong Kwan KIM ; Young Mog SHIM ; Sun Hye SHIN ; Kyungjong LEE ; Sang-Won UM ; Hojoong KIM ; Jong Ho CHO
Cancer Research and Treatment 2024;56(2):502-512
Purpose:
It is unclear whether performing endosonography first in non–small cell lung cancer (NSCLC) patients with radiological N1 (rN1) has any advantages over surgery without nodal staging. We aimed to compare surgery without endosonography to performing endosonography first in rN1 on the overall survival (OS) of patients with NSCLC.
Materials and Methods:
This is a retrospective analysis of patients with rN1 NSCLC between 2013 and 2019. Patients were divided into ‘no endosonography’ and ‘endosonography first’ groups. We investigated the effect of nodal staging through endosonography on OS using propensity score matching (PSM) and multivariable Cox proportional hazard regression analysis.
Results:
In the no endosonography group, pathologic N2 occurred in 23.0% of patients. In the endosonography first group, endosonographic N2 and N3 occurred in 8.6% and 1.6% of patients, respectively. Additionally, 51 patients were pathologic N2 among 249 patients who underwent surgery and mediastinal lymph node dissection (MLND) in endosonography first group. After PSM, the 5-year OSs were 68.1% and 70.6% in the no endosonography and endosonography first groups, respectively. However, the 5-year OS was 80.2% in the subgroup who underwent surgery and MLND of the endosonography first group. Moreover, in patients receiving surgical resection with MLND, the endosonography first group tended to have a better OS than the no endosonography group in adjusted analysis using various models.
Conclusion
In rN1 NSCLC, preoperative endosonography shows better OS than surgery without endosonography. For patients with rN1 NSCLC who are candidates for surgery, preoperative endosonography may help improve survival through patient selection.
6.Adjuvant Pembrolizumab in Patients with Stage IIIA/N2 Non–Small Cell Lung Cancer Completely Resected after Neoadjuvant Concurrent Chemoradiation: A Prospective, Open-Label, Single-Arm, Phase 2 Trial
Junghoon SHIN ; Sehhoon PARK ; Kyung Hwan KIM ; Eui-Cheol SHIN ; Hyun Ae JUNG ; Jong Ho CHO ; Jong-Mu SUN ; Se-Hoon LEE ; Yong Soo CHOI ; Jin Seok AHN ; Jhingook KIM ; Keunchil PARK ; Young Mog SHIM ; Hong Kwan KIM ; Jae Myoung NOH ; Yong Chan AHN ; Hongryull PYO ; Myung-Ju AHN
Cancer Research and Treatment 2024;56(4):1084-1095
Purpose:
Optimal treatment for stage IIIA/N2 non–small cell lung cancer (NSCLC) is controversial. We aimed to assess the efficacy and safety of adjuvant pembrolizumab for stage IIIA/N2 NSCLC completely resected after neoadjuvant concurrent chemoradiation therapy (CCRT).
Materials and Methods:
In this open-label, single-center, single-arm phase 2 trial, patients with stage IIIA/N2 NSCLC received adjuvant pembrolizumab for up to 2 years after complete resection following neoadjuvant CCRT. The primary endpoint was disease-free survival (DFS). Secondary endpoints included overall survival (OS) and safety. As an exploratory biomarker analysis, we evaluated the proliferative response of blood CD39+PD-1+CD8+ T cells using fold changes in the percentage of proliferating Ki-67+ cells from days 1 to 7 of cycle 1 (Ki-67D7/D1).
Results:
Between October 2017 and October 2018, 37 patients were enrolled. Twelve (32%) and three (8%) patients harbored EGFR and ALK alterations, respectively. Of 34 patients with programmed cell death ligand 1 assessment, 21 (62%), nine (26%), and four (12%) had a tumor proportion score of < 1%, 1%-50%, and ≥ 50%, respectively. The median follow-up was 71 months. The median DFS was 22.4 months in the overall population, with a 5-year DFS rate of 29%. The OS rate was 86% at 2 years and 76% at 5 years. Patients with tumor recurrence within 6 months had a significantly lower Ki-67D7/D1 among CD39+PD-1+CD8+ T cells than those without (p=0.036). No new safety signals were identified.
Conclusion
Adjuvant pembrolizumab may offer durable disease control in a subset of stage IIIA/N2 NSCLC patients after neoadjuvant CCRT and surgery.
7.The Relationship between Depression Severity and Prefrontal Hemodynamic Changes in Adolescents with Major Depression Disorder: A Functional Near-infrared Spectroscopy Study
Jeong Eun SHIN ; Yun Sung LEE ; Seo Young PARK ; Mi Young JEONG ; Jong Kwan CHOI ; Ji Hyun CHA ; Yeon Jung LEE
Clinical Psychopharmacology and Neuroscience 2024;22(1):118-128
Objective:
Numerous studies have identified hemodynamic changes in adults with major depressive disorder (MDD) by using functional near-infrared spectroscopy (fNIRS). However, studies on adolescents with MDD are limited. As adolescence is a stage of rapid brain development, differences may occur depending on age. This study used fNIRS as an objective tool to investigate hemodynamic changes in the frontal lobe according to depression severity and age in adolescents with MDD.
Methods:
Thirty adolescents (12 aged 12−15 years and 18 aged 16−18 years) were retrospectively investigated. The Children’s Depression Inventory was used as a psychiatric evaluation scale, fNIRS was used as an objective brain function evaluation tool, and the Verbal Fluency Test was performed.
Results:
During the Verbal Fluency Test, in the younger MDD group, oxygenated-hemoglobin concentration increased in the right dorsolateral prefrontal cortex region as the severity of depression increased. In the older MDD group, the oxygenated-hemoglobin concentration decreased in the right dorsolateral prefrontal cortex region as the severity of depression increased.
Conclusion
These results suggest that fNIRS may be an objective tool for identifying age differences among adolescents with MDD. To generalize the results and verify fNIRS as a potential biomarker tool, follow-up studies with a larger sample group should be conducted.
8.Brain Frailty and Outcomes of Acute Minor Ischemic Stroke With Large-Vessel Occlusion
Je-Woo PARK ; Joon-Tae KIM ; Ji Sung LEE ; Beom Joon KIM ; Joonsang YOO ; Jung Hoon HAN ; Bum Joon KIM ; Chi Kyung KIM ; Jae Guk KIM ; Sung Hyun BAIK ; Jong-Moo PARK ; Kyusik KANG ; Soo Joo LEE ; Hyungjong PARK ; Jae-Kwan CHA ; Tai Hwan PARK ; Kyungbok LEE ; Jun LEE ; Keun-Sik HONG ; Byung-Chul LEE ; Dong-Eog KIM ; Jay Chol CHOI ; Jee-Hyun KWON ; Dong-Ick SHIN ; Sung Il SOHN ; Sang-Hwa LEE ; Wi-Sun RYU ; Juneyoung LEE ; Hee-Joon BAE
Journal of Clinical Neurology 2024;20(2):175-185
Background:
and Purpose The influence of imaging features of brain frailty on outcomes were investigated in acute ischemic stroke patients with minor symptoms and large-vessel occlusion (LVO).
Methods:
This was a retrospective analysis of a prospective, multicenter, nationwide registry of consecutive patients with acute (within 24 h) minor (National Institutes of Health Stroke Scale score=0–5) ischemic stroke with anterior circulation LVO (acute minor LVO). Brain frailty was stratified according to the presence of an advanced white-matter hyperintensity (WMH) (Fazekas grade 2 or 3), silent/old brain infarct, or cerebral microbleeds. The primary outcome was a composite of stroke, myocardial infarction, and all-cause mortality within 1 year.
Results:
In total, 1,067 patients (age=67.2±13.1 years [mean±SD], 61.3% males) were analyzed. The proportions of patients according to the numbers of brain frailty burdens were as follows: no burden in 49.2%, one burden in 30.0%, two burdens in 17.3%, and three burdens in 3.5%. In the Cox proportional-hazards analysis, the presence of more brain frailty burdens was associated with a higher risk of 1-year primary outcomes, but after adjusting for clinically relevant variables there were no significant associations between burdens of brain frailty and 1-year vascular outcomes. For individual components of brain frailty, an advanced WMH was independently associated with an increased risk of 1-year primary outcomes (adjusted hazard ratio [aHR]=1.33, 95% confidence interval [CI]=1.03–1.71) and stroke (aHR=1.32, 95% CI=1.00–1.75).
Conclusions
The baseline imaging markers of brain frailty were common in acute minor ischemic stroke patients with LVO. An advanced WMH was the only frailty marker associated with an increased risk of vascular events. Further research is needed into the association between brain frailty and prognosis in patients with acute minor LVO.
9.Chromosomal Microarray Analysis in Fetuses With Ultrasonographic Soft Markers: A Meta-Analysis of the Current Evidence
Uisuk KIM ; Young Mi JUNG ; Sohee OH ; Ji Hye BAE ; Jeesun LEE ; Chan-Wook PARK ; Joong Shin PARK ; Jong Kwan JUN ; Seung Mi LEE
Journal of Korean Medical Science 2024;39(8):e70-
Background:
Ultrasonographic soft markers are normal variants, rather than fetal abnormalities, and guidelines recommend a detailed survey of fetal anatomy to determine the necessity of antenatal karyotyping. Anecdotal reports have described cases with ultrasonographic soft markers in which chromosomal microarray analysis (CMA) revealed pathogenic copy number variants (CNVs) despite normal results on conventional karyotyping, but CMA for ultrasonographic soft markers remains a matter of debate. In this systematic review, we evaluated the clinical significance of CMA for pregnancies with isolated ultrasonographic soft markers and a normal fetal karyotype.
Methods:
An electronic search was conducted by an experienced librarian through the MEDLINE, Embase, and Cochrane CENTRAL databases. We reviewed 3,338 articles (3,325 identified by database searching and 13 by a hand search) about isolated ultrasonographic soft markers, and seven ultrasonographic markers (choroid plexus cysts, echogenic bowel, echogenic intracardiac focus, hypoplastic nasal bone, short femur [SF], single umbilical artery, and urinary tract dilatation) were included for this study.
Results:
Seven eligible articles were included in the final review. Pathogenic or likely pathogenic CNVs were found in fetuses with isolated ultrasonographic soft markers and a normal karyotype. The overall prevalence of pathogenic or likely pathogenic CNVs was 2.0% (41 of 2,048). The diagnostic yield of CMA was highest in fetuses with isolated SF (9 of 225, 3.9%).
Conclusion
CMA could aid in risk assessment and pregnancy counseling in pregnancies where the fetus has isolated ultrasonographic soft markers along with a normal karyotype.
10.Identification of Preeclamptic Placenta in Whole Slide Images Using Artificial Intelligence Placenta Analysis
Young Mi JUNG ; Seyeon PARK ; Youngbin AHN ; Haeryoung KIM ; Eun Na KIM ; Hye Eun PARK ; Sun Min KIM ; Byoung Jae KIM ; Jeesun LEE ; Chan-Wook PARK ; Joong Shin PARK ; Jong Kwan JUN ; Young-Gon KIM ; Seung Mi LEE
Journal of Korean Medical Science 2024;39(39):e271-
Background:
Preeclampsia (PE) is a hypertensive pregnancy disorder linked to placental dysfunction, often involving pathological lesions like acute atherosis, decidual vasculopathy, accelerated villous maturation, and fibrinoid deposition. However, there is no gold standard for the pathological diagnosis of PE and this limits the ability of clinicians to distinguish between PE and non-PE pregnancies. Recent advances in computational pathology have provided the opportunity to automate pathological analysis for diagnosis, classification, prediction, and prediction of disease progression. In this study, we assessed whether computational pathology could be used to identify PE placentas.
Methods:
A total of 168 placental whole-slide images (WSIs) of patients from Seoul National University Hospital (comprising 84 PE cases and 84 normal controls) were used for model development and internal validation. For external validation of the model, 76 placental slides (including 38 PE cases and 38 normal controls) were obtained from the Boramae Medical Center (BMC). To establish standard criteria for diagnosing PE and distinguishing it from controls using placental WSIs, patch characteristics and quantification of terminal and intermediate villi were employed. In unsupervised learning, K-means clustering was conducted as a feature obtained through an Auto Encoder to extract the ratio of each cluster for each WSI. For supervised learning, quantitative assessments of the villi were obtained using a U-Net-based segmentation algorithm. The prediction model was developed using an ensemble method and was compared with a clinical feature model developed by using placental size features.
Results:
Using ensemble modeling, we developed a model to identify PE placentas.The model showed good performance (area under the precision-recall curve [AUPRC], 0.771; 95% confidence interval [CI], 0.752–0.790), with 77.3% of sensitivity and 71.1% of specificity, whereas the clinical feature model showed an AUPRC 0.713 (95% CI, 0.694–0.732) with 55.6% sensitivity and 86.8% specificity. External validation of the predictive model employing the BMC-derived set of placental slides also showed good discrimination (AUPRC, 0.725; 95% CI, 0.720–0.730).
Conclusion
The proposed computational pathology model demonstrated a strong ability to identify preeclamptic placentas. Computational pathology has the potential to improve the identification of PE placentas.

Result Analysis
Print
Save
E-mail