1.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
2.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
3.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
4.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
5.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
6.Immunoregulatory mechanisms in the aging microenvironment: Targeting the senescence-associated secretory phenotype for cancer immunotherapy.
Haojun WANG ; Yang YU ; Runze LI ; Huiru ZHANG ; Zhe-Sheng CHEN ; Changgang SUN ; Jing ZHUANG
Acta Pharmaceutica Sinica B 2025;15(9):4476-4496
The aging microenvironment, as a key driver of tumorigenesis and progression, plays a critical role in tumor immune regulation through one of its core features-the senescence-associated secretory phenotype (SASP). SASP consists of a variety of interleukins, chemokines, proteases, and growth factors. It initially induces surrounding cells to enter a state of senescence through paracrine mechanisms, thereby creating a sustained inflammatory stimulus and signal amplification effect within the tissue microenvironment. Furthermore, these secreted factors activate key signaling pathways such as NF-κB, cGAS-STING, and mTOR, which regulate the expression of immune-related molecules (such as PD-L1) and promote the recruitment of immunosuppressive cells, including regulatory T cells and myeloid-derived suppressor cells. This process ultimately contributes to the formation of an immunosuppressive tumor microenvironment. Furthermore, the article explores potential anti-tumor immunotherapy strategies targeting SASP and its associated molecular mechanisms, including approaches to inhibit SASP secretion or eliminate senescent cells. Although these strategies have shown promise in certain tumor models, the high heterogeneity among tumor types may result in varied responses to SASP-targeted therapies. This highlights the need for further research into adaptive stratification and personalized treatment approaches. Targeting immune regulatory mechanisms in the aging microenvironment-particularly SASP-holds great potential for advancing future anti-tumor therapies.
7.Multidrug resistance reversal effect of tenacissoside I through impeding EGFR methylation mediated by PRMT1 inhibition.
Donghui LIU ; Qian WANG ; Ruixue ZHANG ; Ruixin SU ; Jiaxin ZHANG ; Shanshan LIU ; Huiying LI ; Zhesheng CHEN ; Yan ZHANG ; Dexin KONG ; Yuling QIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1092-1103
Cancer multidrug resistance (MDR) impairs the therapeutic efficacy of various chemotherapeutics. Novel approaches, particularly the development of MDR reversal agents, are critically needed to address this challenge. This study demonstrates that tenacissoside I (TI), a compound isolated from Marsdenia tenacissima (Roxb.) Wight et Arn, traditionally used in clinical practice as an ethnic medicine for cancer treatment, exhibits significant MDR reversal effects in ABCB1-mediated MDR cancer cells. TI reversed the resistance of SW620/AD300 and KBV200 cells to doxorubicin (DOX) and paclitaxel (PAC) by downregulating ABCB1 expression and reducing ABCB1 drug transport function. Mechanistically, protein arginine methyltransferase 1 (PRMT1), whose expression correlates with poor prognosis and shows positive association with both ABCB1 and EGFR expressions in tumor tissues, was differentially expressed in TI-treated SW620/AD300 cells. SW620/AD300 and KBV200 cells exhibited elevated levels of EGFR asymmetric dimethylarginine (aDMA) and enhanced PRMT1-EGFR interaction compared to their parental cells. Moreover, TI-induced PRMT1 downregulation impaired PRMT1-mediated aDMA of EGFR, PRMT1-EGFR interaction, and EGFR downstream signaling in SW620/AD300 and KBV200 cells. These effects were significantly reversed by PRMT1 overexpression. Additionally, TI demonstrated resistance reversal to PAC in xenograft models without detectable toxicities. This study establishes TI's MDR reversal effect in ABCB1-mediated MDR human cancer cells through inhibition of PRMT1-mediated aDMA of EGFR, suggesting TI's potential as an MDR modulator for improving chemotherapy outcomes.
Humans
;
Protein-Arginine N-Methyltransferases/antagonists & inhibitors*
;
Drug Resistance, Neoplasm/drug effects*
;
ErbB Receptors/genetics*
;
Animals
;
Cell Line, Tumor
;
Drug Resistance, Multiple/drug effects*
;
Methylation/drug effects*
;
Saponins/administration & dosage*
;
Mice
;
Mice, Nude
;
Mice, Inbred BALB C
;
ATP Binding Cassette Transporter, Subfamily B/genetics*
;
Doxorubicin/pharmacology*
;
Paclitaxel/pharmacology*
;
Female
;
Repressor Proteins
8.GLUL stabilizes N-Cadherin by antagonizing β-Catenin to inhibit the progresses of gastric cancer.
Qiwei JIANG ; Yong LI ; Songwang CAI ; Xingyuan SHI ; Yang YANG ; Zihao XING ; Zhenjie HE ; Shengte WANG ; Yubin SU ; Meiwan CHEN ; Zhesheng CHEN ; Zhi SHI
Acta Pharmaceutica Sinica B 2024;14(2):698-711
Glutamate-ammonia ligase (GLUL, also known as glutamine synthetase) is a crucial enzyme that catalyzes ammonium and glutamate into glutamine in the ATP-dependent condensation. Although GLUL plays a critical role in multiple cancers, the expression and function of GLUL in gastric cancer remain unclear. In the present study, we have found that the expression level of GLUL was significantly lower in gastric cancer tissues compared with adjacent normal tissues, and correlated with N stage and TNM stage, and low GLUL expression predicted poor survival for gastric cancer patients. Knockdown of GLUL promoted the growth, migration, invasion and metastasis of gastric cancer cells in vitro and in vivo, and vice versa, which was independent of its enzyme activity. Mechanistically, GLUL competed with β-Catenin to bind to N-Cadherin, increased the stability of N-Cadherin and decreased the stability of β-Catenin by alerting their ubiquitination. Furthermore, there were lower N-Cadherin and higher β-Catenin expression levels in gastric cancer tissues compared with adjacent normal tissues. GLUL protein expression was correlated with that of N-Cadherin, and could be the independent prognostic factor in gastric cancer. Our findings reveal that GLUL stabilizes N-Cadherin by antagonizing β-Catenin to inhibit the progress of gastric cancer.
9.Intravenous tocilizumab versus standard of care in the treatment of severe and critical COVID-19-related pneumonia: A single center, double-blind, placebo controlled, phase 3 trial
Eric Jason B. Amante ; Aileen S. David-Wang ; Michael L. Tee ; Felix Eduardo R. Punzalan ; John C. Añ ; onuevo ; Lenora C. Fernandez ; Albert B. Albay Jr. ; John Carlo M. Malabad ; Fresthel Monica M. Climacosa ; A. Nico Nahar I. Pajes ; Patricia Maria Gregoria M. Cuañ ; o ; Marissa M. Alejandrí ; a
Acta Medica Philippina 2024;58(6):7-13
Background:
Severe and critical COVID-19 disease is characterized by hyperinflammation involving pro-inflammatory cytokines, particularly IL-6. Tocilizumab is a monoclonal antibody that blocks IL-6 receptors.
Objectives:
This study evaluated the efficacy of tocilizumab in Filipino patients with severe to critical COVID-19 disease.
Methods:
This phase 3 randomized double-blind trial, included patients hospitalized for severe or critical COVID-19 in a 1:1 ratio to receive either tocilizumab plus local standard of care or placebo plus standard of care. Patients were eligible for a repeat IV infusion within 24-48 hours if they deteriorated or did not improve. Treatment success or clinical improvement was defined as at least two categories of improvement from baseline in the WHO 7-point Ordinal Scale of patient status, in an intention-to-treat manner.
Results:
Forty-nine (49) patients were randomized in the tocilizumab arm and 49 in the placebo arm. There was no significant difference in age, comorbidities, COVID-19 severity, need for mechanical ventilation, presence of acute respiratory distress syndrome, or biomarker levels between groups. Use of adjunctive therapy was similar between groups, with corticosteroid used in 91.8% in tocilizumab group and 81.6% in the placebo group, while remdesivir was used in 98% of participants in both groups. There was no significant difference between groups in terms of treatment success in both the intention-to-treat analysis (relative risk=1.05, 95% CI: 0.85-1.30) and per-protocol analysis (relative risk=0.98, 95% CI: 0.80 to 1.21). There was no significant difference in time to improvement of at least two categories relative to baseline on the 7-point Ordinal Scale of clinical status.
Conclusion
The use of tocilizumab on top of standard of care in the management of patients with severe to critical COVID-19 did not result in significant improvement as defined by the WHO 7-point Ordinal Scale of patient status, nor in significant improvement in incidence of mechanical ventilation, incidence of ICU admission, length of ICU stay, and mortality rate.
COVID-19
;
Interleukin-6
10.Unveiling the Complex World of Extracellular Vesicles: Novel Characterization Techniques and Manufacturing Considerations
James J. LAI ; John J. HILL ; Casey Y. HUANG ; Gino C. LEE ; Karol W. MAI ; Maggie Y. SHEN ; Simon K. WANG
Chonnam Medical Journal 2024;60(1):1-12
Extracellular vesicles (EVs) function as potent mediators of intercellular communication for many in vivo processes, contributing to both health and disease related conditions. Given their biological origins and diverse functionality from correspondingly unique “cargo” compositions, both endogenous and modified EVs are garnering attention as promising therapeutic modalities and vehicles for targeted therapeutic delivery applications. Their diversity in composition, however, has revealed a significant need for more comprehensive analytical-based characterization methods, and manufacturing processes that are consistent and scalable. In this review, we explore the dynamic landscape of EV research and development efforts, ranging from novel isolation approaches, to their analytical assessment through novel characterization techniques, and to their production by industrial-scale manufacturing process considerations. Expanding the horizon of these topics to EVs for in-human applications, we underscore the need for stringent development and adherence to Good Manufacturing Practice (GMP) guidelines. Wherein, the intricate interplay of raw materials, production in bioreactors, and isolation practices, along with analytical assessments compliant with the Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines, in conjunction with reference standard materials, collectively pave the way for standardized and consistent GMP production processes.


Result Analysis
Print
Save
E-mail