1.Construction of risk prediction model for macular edema after phacoemulsification in diabetic cataract patients
Bing LIU ; Jie QIN ; Jiyun DUAN ; Qianqian LIU ; Bangjian SONG
International Eye Science 2025;25(10):1650-1655
AIM: To construct a risk nomogram prediction model of macular edema(ME)based on the risk factors of ME after phacoemulsification in diabetic cataract(DC)patients.METHODS: A retrospective collection of data was conducted on 1 751 DC patients(1 751 eyes)who underwent cataract phacoemulsification surgery in the hospital from January 2022 to December 2024. Based on whether they developed ME after surgery, the patients were divided into the ME group(n=138)and the N-ME group(n=1 613). By conducting univariate and Logistic multiple regression analysis, the risk factors for postoperative ME in DC patients undergoing phacoemulsification were identified. A nomogram of risk prediction model was constructed, and the receiver operating characteristic(ROC)curve, calibration curve, Hosmer-Lemeshow goodness of fit test were plotted to evaluate the discrimination and calibration of the model. The decision curve was used to evaluate the clinical return on investment of the model.RESULTS: Age, course of diabetes, proportion of insulin treatment, proportion of retinopathy, best corrected visual acuity(BCVA), central subfield macular thickness(CSMT), macular volume, glycated hemoglobin(HbA1c), vascular endothelial growth factor(VEGF)in the ME group were higher than those in the N-ME group(all P<0.05). Multivariate Logistic regression analysis showed that diabetes course, retinopathy, BCVA, CSMT, macular volume, HbA1c and VEGF were the risk factors for ME after phacoemulsification in DC patients(all P<0.05). A nomogram of risk prediction model was constructed based on risk factors, and the ROC curve suggested good model differentiation [AUC of training set was 0.998(95% CI: 0.997-1.000), and AUC of validation set was 0.999(95% CI: 0.997-1.000)], set: R2=0.917, χ2=0.806, P=0.999; verification set: R2=0.900, χ2=0.675, P=1.000). The decision curve showed that the model had a high net return rate within the probability range of 0.00-1.00 threshold.CONCLUSION: Diabetes course, retinopathy, BCVA, CSMT, macular volume, HbA1c and VEGF are risk factors for ME after cataract phacoemulsification in DC patients. The nomogram of risk prediction model based on this construction has good differentiation and consistency in predicting the risk of ME after cataract phacoemulsification in DC patients.
2.Microglial Depletion does not Affect the Laterality of Mechanical Allodynia in Mice.
Quan MA ; Dongmei SU ; Jiantao HUO ; Guangjuan YIN ; Dong DONG ; Kaifang DUAN ; Hong CHENG ; Huiling XU ; Jiao MA ; Dong LIU ; Bin MOU ; Jiyun PENG ; Longzhen CHENG
Neuroscience Bulletin 2023;39(8):1229-1245
Mechanical allodynia (MA), including punctate and dynamic forms, is a common and debilitating symptom suffered by millions of chronic pain patients. Some peripheral injuries result in the development of bilateral MA, while most injuries usually led to unilateral MA. To date, the control of such laterality remains poorly understood. Here, to study the role of microglia in the control of MA laterality, we used genetic strategies to deplete microglia and tested both dynamic and punctate forms of MA in mice. Surprisingly, the depletion of central microglia did not prevent the induction of bilateral dynamic and punctate MA. Moreover, in dorsal root ganglion-dorsal root-sagittal spinal cord slice preparations we recorded the low-threshold Aβ-fiber stimulation-evoked inputs and outputs of superficial dorsal horn neurons. Consistent with behavioral results, microglial depletion did not prevent the opening of bilateral gates for Aβ pathways in the superficial dorsal horn. This study challenges the role of microglia in the control of MA laterality in mice. Future studies are needed to further understand whether the role of microglia in the control of MA laterality is etiology-or species-specific.
Mice
;
Animals
;
Hyperalgesia/metabolism*
;
Microglia/metabolism*
;
Disease Models, Animal
;
Spinal Cord/metabolism*
;
Spinal Cord Dorsal Horn/metabolism*
;
Ganglia, Spinal/metabolism*
3.Correction: Microglial Depletion does not Affect the Laterality of Mechanical Allodynia in Mice.
Quan MA ; Dongmei SU ; Jiantao HUO ; Guangjuan YIN ; Dong DONG ; Kaifang DUAN ; Hong CHENG ; Huiling XU ; Jiao MA ; Dong LIU ; Bin MOU ; Jiyun PENG ; Longzhen CHENG
Neuroscience Bulletin 2023;39(11):1745-1746

Result Analysis
Print
Save
E-mail