1.Protective Role of Transduced Tat-Thioredoxin1 (Trx1) against Oxidative Stress-Induced Neuronal Cell Death via ASK1-MAPK Signal Pathway
Eun Ji YEO ; Won Sik EUM ; Hyeon Ji YEO ; Yeon Joo CHOI ; Eun Jeong SOHN ; Hyun Jung KWON ; Dae Won KIM ; Duk-Soo KIM ; Sung-Woo CHO ; Jinseu PARK ; Kyu Hyung HAN ; Keun Wook LEE ; Jong Kook PARK ; Min Jea SHIN ; Soo Young CHOI
Biomolecules & Therapeutics 2021;29(3):321-330
Oxidative stress plays a crucial role in the development of neuronal disorders including brain ischemic injury. Thioredoxin 1 (Trx1), a 12 kDa oxidoreductase, has anti-oxidant and anti-apoptotic functions in various cells. It has been highly implicated in brain ischemic injury. However, the protective mechanism of Trx1 against hippocampal neuronal cell death is not identified yet. Using a cell permeable Tat-Trx1 protein, protective mechanism of Trx1 against hydrogen peroxide-induced cell death was examined using HT-22 cells and an ischemic animal model. Transduced Tat-Trx1 markedly inhibited intracellular ROS levels, DNA fragmentation, and cell death in H 2O 2-treatment HT-22 cells. Tat-Trx1 also significantly inhibited phosphorylation of ASK1 and MAPKs in signaling pathways of HT-22 cells. In addition, Tat-Trx1 regulated expression levels of Akt, NF-κB, and apoptosis related proteins. In an ischemia animal model, Tat-Trx1 markedly protected hippocampal neuronal cell death and reduced astrocytes and microglia activation. These findings indicate that transduced Tat-Trx1 might be a potential therapeutic agent for treating ischemic injury.
2.Protective Role of Transduced Tat-Thioredoxin1 (Trx1) against Oxidative Stress-Induced Neuronal Cell Death via ASK1-MAPK Signal Pathway
Eun Ji YEO ; Won Sik EUM ; Hyeon Ji YEO ; Yeon Joo CHOI ; Eun Jeong SOHN ; Hyun Jung KWON ; Dae Won KIM ; Duk-Soo KIM ; Sung-Woo CHO ; Jinseu PARK ; Kyu Hyung HAN ; Keun Wook LEE ; Jong Kook PARK ; Min Jea SHIN ; Soo Young CHOI
Biomolecules & Therapeutics 2021;29(3):321-330
Oxidative stress plays a crucial role in the development of neuronal disorders including brain ischemic injury. Thioredoxin 1 (Trx1), a 12 kDa oxidoreductase, has anti-oxidant and anti-apoptotic functions in various cells. It has been highly implicated in brain ischemic injury. However, the protective mechanism of Trx1 against hippocampal neuronal cell death is not identified yet. Using a cell permeable Tat-Trx1 protein, protective mechanism of Trx1 against hydrogen peroxide-induced cell death was examined using HT-22 cells and an ischemic animal model. Transduced Tat-Trx1 markedly inhibited intracellular ROS levels, DNA fragmentation, and cell death in H 2O 2-treatment HT-22 cells. Tat-Trx1 also significantly inhibited phosphorylation of ASK1 and MAPKs in signaling pathways of HT-22 cells. In addition, Tat-Trx1 regulated expression levels of Akt, NF-κB, and apoptosis related proteins. In an ischemia animal model, Tat-Trx1 markedly protected hippocampal neuronal cell death and reduced astrocytes and microglia activation. These findings indicate that transduced Tat-Trx1 might be a potential therapeutic agent for treating ischemic injury.
3.Transduced Tat-aldose Reductase Protects Hippocampal Neuronal Cells against Oxidative Stress-induced Damage
Su Bin CHO ; Won Sik EUM ; Min Jea SHIN ; Hyun Jung KWON ; Jung Hwan PARK ; Yeon Joo CHOI ; Jinseu PARK ; Kyu Hyung HAN ; Ju Hyeon KANG ; Duk Soo KIM ; Sung Woo CHO ; Dae Won KIM ; Soo Young CHOI
Experimental Neurobiology 2019;28(5):612-627
Aldose reductase (AR) protein, a member of the NADPH-dependent aldo-keto reductase family, reduces a wide range of aldehydes and enhances cell survival by inhibition of oxidative stress. Oxidative stress is known as one of the major pathological factor in ischemia. Since the precise function of AR protein in ischemic injury is fully unclear, we examined the function of AR protein in hippocampal neuronal (HT-22) cells and in an animal model of ischemia in this study. Cell permeable Tat-AR protein was produced by fusion of protein transduction domain in Tat for delivery into the cells. Tat-AR protein transduced into HT-22 cells and significantly inhibited cell death and regulated the mitogen-activate protein kinases (MAPKs), Bcl-2, Bax, and Caspase-3 under oxidative stress condition. In an ischemic animal model, Tat-AR protein transduced into the brain tissues through the blood-brain barrier (BBB) and drastically decreased neuronal cell death in hippocampal CA1 region. These results indicate that transduced Tat-AR protein has protective effects against oxidative stress-induced neuronal cell death in vitro and in vivo, suggesting that Tat-AR protein could be used as potential therapeutic agent in ischemic injury.
Aldehyde Reductase
;
Aldehydes
;
Blood-Brain Barrier
;
Brain
;
CA1 Region, Hippocampal
;
Caspase 3
;
Cell Death
;
Cell Survival
;
Humans
;
In Vitro Techniques
;
Ischemia
;
Models, Animal
;
Neurons
;
Oxidative Stress
;
Oxidoreductases
;
Protein Kinases
4.Oenanthe javanica extract increases immunoreactivities of antioxidant enzymes in the rat kidney.
Hyun-Jin TAE ; Joon Ha PARK ; Jeong-Hwi CHO ; In Hye KIM ; Ji Hyeon AHN ; Jae Chul LEE ; Jong-Dai KIM ; Jinseu PARK ; Soo Young CHOI ; Moo-Ho WON
Chinese Medical Journal 2014;127(21):3758-3763
BACKGROUNDOenanthe javanica is an aquatic perennial herb originated from East Asia. Nowadays, the effects of Oenanthe javanica have been proven in various disease models. Studies regarding the antioxidant effect of Oenanthe javanica in the kidney are still unclear.
METHODSThis study was therefore performed to investigate the effect of the Oenanthe javanica extract (OJE) in the rat kidney using immunohistochemistry for antioxidant enzymes, copper, zinc-superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPx). Sprague-Dawley rats were randomly assigned to three groups: (1) normal diet fed-group (normal-group), (2) diet containing ascorbic acid (AA)-fed group (AA-group) as a positive control, (3) diet containing OJE-fed group (OJE-group). AA and OJE were supplied during 28 days.
RESULTSThe side-effects were not observed in all the groups. Immunoreactivities of SOD1, SOD2, CAT and GPx were easily detected in the distal tubules of the kidney, and their immunoreactivities in the AA-and OJE-groups were increased to about 1.4-1.5 times and 2 times, respectively, compared with those in the normal-group.
CONCLUSIONOJE significantly increased expressions of SOD1 & 2, CAT and GPx immunoreactivities in the distal tubules of the rat kidney, and this finding suggests that significant enhancements of endogenous enzymatic antioxidants by OJE treatment may be a legitimate strategy for decreasing oxidative stresses in the kidney.
Animals ; Antioxidants ; metabolism ; Catalase ; metabolism ; Glutathione Peroxidase ; metabolism ; Kidney ; drug effects ; enzymology ; metabolism ; Male ; Oenanthe ; chemistry ; Oxidative Stress ; drug effects ; Plant Extracts ; chemistry ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Superoxide Dismutase ; metabolism
5.Retraction: Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury.
Hoon Jae JEONG ; Dae Won KIM ; Mi Jin KIM ; Su Jung WOO ; Hye Ri KIM ; So Mi KIM ; Hyo Sang JO ; Hyun Sook HWANG ; Duk Soo KIM ; Sung Woo CHO ; Moo Ho WON ; Kyu Hyung HAN ; Jinseu PARK ; Won Sik EUM ; Soo Young CHOI
Experimental & Molecular Medicine 2013;45(5):e24-
No abstract available.
6.Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury.
Hoon Jae JEONG ; Dae Won KIM ; Mi Jin KIM ; Su Jung WOO ; Hye Ri KIM ; So Mi KIM ; Hyo Sang JO ; Hyun Sook HWANG ; Duk Soo KIM ; Sung Woo CHO ; Moo Ho WON ; Kyu Hyung HAN ; Jinseu PARK ; Won Sik EUM ; Soo Young CHOI
Experimental & Molecular Medicine 2012;44(10):586-593
Reactive oxygen species (ROS) contribute to the development of a number of neuronal diseases including ischemia. DJ-1, also known to PARK7, plays an important role in transcriptional regulation, acting as molecular chaperone and antioxidant. In the present study, we investigated whether DJ-1 protein shows a protective effect against oxidative stress-induced neuronal cell death in vitro and in ischemic animal models in vivo. To explore DJ-1 protein's potential role in protecting against ischemic cell death, we constructed cell permeable Tat-DJ-1 fusion proteins. Tat-DJ-1 protein efficiently transduced into neuronal cells in a dose- and time-dependent manner. Transduced Tat-DJ-1 protein increased cell survival against hydrogen peroxide (H2O2) toxicity and also reduced intracellular ROS. In addition, Tat-DJ-1 protein inhibited DNA fragmentation induced by H2O2. Furthermore, in animal models, immunohistochemical analysis revealed that Tat-DJ-1 protein prevented neuronal cell death induced by transient forebrain ischemia in the CA1 region of the hippocampus. These results demonstrate that transduced Tat-DJ-1 protein protects against cell death in vitro and in vivo, suggesting that the transduction of Tat-DJ-1 may be useful as a therapeutic agent for ischemic injuries related to oxidative stress.
Animals
;
Blood-Brain Barrier/metabolism
;
Brain Ischemia/*metabolism/pathology/prevention & control
;
CA1 Region, Hippocampal/drug effects/metabolism/pathology
;
Cell Line, Tumor
;
Cell Survival/drug effects
;
Gerbillinae
;
Intracellular Signaling Peptides and Proteins/*administration & dosage/biosynthesis/pharmacokinetics
;
Lipid Peroxidation
;
Malondialdehyde/metabolism
;
Mice
;
Neuroprotective Agents/*administration & dosage/pharmacokinetics
;
Oncogene Proteins/*administration & dosage/biosynthesis/pharmacokinetics
;
*Oxidative Stress
;
Prosencephalon/drug effects/metabolism/pathology
;
Rats
;
Recombinant Fusion Proteins/*administration & dosage/biosynthesis/pharmacokinetics
;
tat Gene Products, Human Immunodeficiency Virus/*administration & dosage/biosynthesis/pharmacokinetics
7.Erratum: Chlorogenic Acid Improves Neuroprotective Effect of PEP-1-Ribosomal Protein S3 Against Ischemic Insult.
Eun Hee AHN ; Dae Won KIM ; Min Jea SHIN ; Soon Won KWON ; Young Nam KIM ; Duk Soo KIM ; Soon Sung LIM ; Joon KIM ; Jinseu PARK ; Won Sik EUM ; Hyun Sook HWANG ; Soo Young CHOI
Experimental Neurobiology 2012;21(4):172-172
On page 173, the incorrect image which was not submitted by the author was mistakenly printed for Fig. 5 by a system error of the editing company.
8.Chlorogenic Acid Improves Neuroprotective Effect of PEP-1-Ribosomal Protein S3 Against Ischemic Insult.
Eun Hee AHN ; Dae Won KIM ; Min Jea SHIN ; Soon Won KWON ; Young Nam KIM ; Duk Soo KIM ; Soon Sung LIM ; Joon KIM ; Jinseu PARK ; Won Sik EUM ; Hyun Sook HWANG ; Soo Young CHOI
Experimental Neurobiology 2011;20(4):169-175
Chlorogenic acid (CGA) possesses various biological activities such as anti-oxidant, anti-inflammatory, and anti-diabetic activities. In the present study, we examined the effect of CGA on the transduction efficiency of PEP-1-ribosomal protein S3 (PEP-1-rpS3) into cells and brain tissues, and its neuroprotective potential against ischemia/reperfusion. We found that, in the presence of CGA, the transduction efficiency of PEP-1-rpS3 into astrocytes and the CA1 region of the hippocampus was enhanced, compared to its transduction in the absence of CGA. Also, cell viability data demonstrated that the sample treated with CGA + PEP-1-rpS3 exhibited improved cell viability against hydrogen peroxide (H2O2)-induced toxicity more significantly than the sample treated with PEP-1-rpS3 alone. Also, in a gerbil ischemia model, data demonstrated that following the ischemic insult, the group treated with PEP-1-rpS3 + CGA showed markedly enhanced protection of neuron cells in CA1 region of hippocampus, compared to those treated with CGA or PEP-1-rpS3 alone. Taken together, these results suggest that CGA may improve the transduction efficiency of protein transduction domain (PTD) fusion proteins into target cells or tissues, thereby enhancing their therapeutic potential against various diseases.
Astrocytes
;
Brain
;
Cell Survival
;
Chlorogenic Acid
;
Gerbillinae
;
Hippocampus
;
Hydrogen Peroxide
;
Ischemia
;
Neurons
;
Neuroprotective Agents
;
Proteins
9.Differential regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression by superoxide dismutase in lipopolysaccharide stimulated RAW 264.7 cells.
Ji Ae LEE ; Ha Yong SONG ; Sung Mi JU ; Su Jin LEE ; Hyung Joo KWON ; Won Sik EUM ; Sang Ho JANG ; Soo Young CHOI ; Jinseu PARK
Experimental & Molecular Medicine 2009;41(9):629-637
Inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) have been known to be involved in various pathophysiological processes such as inflammation. This study was performed to determine the regulatory function of superoxide dismutase (SOD) on the LPS-induced expression of iNOS, and COX-2 in RAW 264.7 cells. When a cell-permeable SOD, Tat-SOD, was added to the culture medium of RAW 264.7 cells, it rapidly entered the cells in a dose-dependent manner. Treatment of RAW 264.7 cells with Tat-SOD led to decrease in LPS-induced ROS generation. Pretreatment with Tat-SOD significantly inhibited LPS-induced expression of iNOS and NO production but had no effect on the expression of COX-2 and PGE2 production in RAW 264.7 cells. Tat-SOD inhibited LPS-induced NF-kappaB DNA binding activity, IkappaBalpha degradation and activation of MAP kinases. These data suggest that SOD differentially regulate expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells.
Animals
;
Cell Line
;
Cyclooxygenase 2/*genetics/metabolism
;
Cytokines/immunology
;
*Gene Expression Regulation
;
Lipopolysaccharides/immunology/metabolism
;
Mice
;
Mitogen-Activated Protein Kinase Kinases/metabolism
;
NF-kappa B/metabolism
;
Nitric Oxide/metabolism
;
Nitric Oxide Synthase Type II/*genetics/metabolism
;
Reactive Oxygen Species/metabolism
;
Superoxide Dismutase/*metabolism
10.Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-kappaB dependent pathway in human astrocytes.
Sung Mi JU ; Ha Yong SONG ; Ji Ae LEE ; Su Jin LEE ; Soo Young CHOI ; Jinseu PARK
Experimental & Molecular Medicine 2009;41(2):86-93
The infiltration of monocytes into the CNS represents one of the early steps to inflammatory events in AIDS-related encephalitis and dementia. Increased activity of selected matrix metalloproteinases (MMPs) such as MMP-9 impairs the integrity of blood-brain barrier leading to enhanced monocyte infiltration into the CNS. In this study, we examined the effect of HIV-1 Tat on the expression of MMP-9 in CRT-MG human astroglioma cells. Treatment of CRT-MG cells with HIV-1 Tat protein significantly increased protein levels of MMP-9, as measured by Western blot analysis, zymography and an ELISA. Treatment of CRT-MG cells with HIV-1 Tat protein markedly increased mRNA levels of MMP-9, as analyzed by RT-PCR. Pretreatment of CRT-MG cells with NF-kappaB inhibitors led to decrease in Tat-induced protein and mRNA expression of MMP-9. Pretreatment of CRT-MG cells with MAPK inhibitors suppressed Tat-induced MMP-9 expression. Furthermore, HIV-1 Tat-induced expression of MMP-9 was significantly inhibited by neutralization of TNF-alpha, but not IL-1beta and IL-6. Taken together, our results indicate that HIV-1 Tat can up-regulate expression of MMP-9 via MAPK-NF-kappaB-dependent mechanisms as well as Tat-induced TNF-alpha production in astrocytes.
AIDS Dementia Complex/*metabolism
;
Astrocytes/*drug effects/enzymology
;
HIV Infections/*complications
;
*HIV-1
;
Humans
;
Matrix Metalloproteinase 9/*genetics/immunology
;
Mitogen-Activated Protein Kinase Kinases/*metabolism
;
NF-kappa B/*metabolism
;
Tumor Cells, Cultured
;
Tumor Necrosis Factor-alpha/immunology/metabolism
;
Up-Regulation/drug effects
;
tat Gene Products, Human Immunodeficiency Virus/*metabolism

Result Analysis
Print
Save
E-mail