1.Construction and Testing of Health LifeStyle Evidence (HLSE)
Chen TIAN ; Yong WANG ; Yilong YAN ; Yafei LIU ; Yao LU ; Mingyao SUN ; Jianing LIU ; Yan MA ; Jinling NING ; Ziying YE ; Qianji CHENG ; Ying LI ; Jiajie HUANG ; Shuihua YANG ; Yiyun WANG ; Bo TONG ; Jiale LU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1413-1421
Healthy lifestyles and good living habits are effective strategies and important approaches to prevent chronic non-communicable diseases. With the development of evidence-based medicine, the evidence translation system has made some achievements in clinical practice. There is, however, no comprehensive, professional and efficient system for translating lifestyle evidence globally. Therefore, the Health Lifestyle Evidence (HLSE) Group of Lanzhou University constructed the HLSE Evidence Translation System (
2.Method for Developing Patient Decision Aid in China
Yao LU ; Qian ZHANG ; Qianji CHENG ; Jianing LIU ; Mingyao SUN ; Jinling NING ; Jiajie HUANG ; Simeng REN ; Wenzheng ZHANG ; Yajie LIU ; Xiyuan DENG ; Jinhui TIAN ; Jie LIU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1422-1431
To systematically construct a guideline to provide a methodological guide for researchers to develop patient decision aids. Through a literature review of international methodological guidance for developing patient decision aids, sorting out the similarities and differences in the processes and methods for developing patient decision aids, and combining them with the topic discussion of the working group, the initial guideline was drafted. A total of 13 guidances was included, with the initial version containing 3 phases, 13 steps, and 48 points. We invited 19 multidisciplinary domain experts for forming consensus. The final version of the guideline contains 3 phases, 11 steps, and 24 points. The guideline has great potential to guide the development of patient decision aids in China and is expected to fill the methodological gap in the field. In the future, several rounds of pilot testing of the guideline based on specific decision issues will be conducted, and the guideline will be further revised and improved.
3.Implementation Evaluation of Clinical Practice Guidelines for Integrative Medicine
Ziying YE ; Chen TIAN ; Yilong YAN ; Qiaofeng LI ; Jinling NING ; Tingting LI ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(2):413-421
4.Applications and Challenges of Adaptive Platform Trial
Yan MA ; Qianji CHENG ; Yao LU ; Jinling NING ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(5):1157-1164
Adaptive design, with advantages such as dynamically adjusting trial plans, reducing resource waste, and improving trial efficiency, has broken through the competitive situation of new drug development and gradually met the needs of clinical research. In recent years, the use of adaptive design in platform trials as an innovative research model has added impetus to new drug development. This article outlines the research progress, contents and characteristics, common design types, statistical analysis, and case interpretation of adaptive design, and introduces the concept, types, and applications of adaptive platform trials, with the hope of providing scientific reference for further exploration of clinical trials and new drug development.
5.Construction and Testing of Health LifeStyle Evidence (HLSE)
Chen TIAN ; Yong WANG ; Yilong YAN ; Yafei LIU ; Yao LU ; Mingyao SUN ; Jianing LIU ; Yan MA ; Jinling NING ; Ziying YE ; Qianji CHENG ; Ying LI ; Jiajie HUANG ; Shuihua YANG ; Yiyun WANG ; Bo TONG ; Jiale LU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1413-1421
Healthy lifestyles and good living habits are effective strategies and important approaches to prevent chronic non-communicable diseases. With the development of evidence-based medicine, the evidence translation system has made some achievements in clinical practice. There is, however, no comprehensive, professional and efficient system for translating lifestyle evidence globally. Therefore, the Health Lifestyle Evidence (HLSE) Group of Lanzhou University constructed the HLSE Evidence Translation System (
6.Method for Developing Patient Decision Aid in China
Yao LU ; Qian ZHANG ; Qianji CHENG ; Jianing LIU ; Mingyao SUN ; Jinling NING ; Jiajie HUANG ; Simeng REN ; Wenzheng ZHANG ; Yajie LIU ; Xiyuan DENG ; Jinhui TIAN ; Jie LIU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1422-1431
To systematically construct a guideline to provide a methodological guide for researchers to develop patient decision aids. Through a literature review of international methodological guidance for developing patient decision aids, sorting out the similarities and differences in the processes and methods for developing patient decision aids, and combining them with the topic discussion of the working group, the initial guideline was drafted. A total of 13 guidances was included, with the initial version containing 3 phases, 13 steps, and 48 points. We invited 19 multidisciplinary domain experts for forming consensus. The final version of the guideline contains 3 phases, 11 steps, and 24 points. The guideline has great potential to guide the development of patient decision aids in China and is expected to fill the methodological gap in the field. In the future, several rounds of pilot testing of the guideline based on specific decision issues will be conducted, and the guideline will be further revised and improved.
7.Development and validation of a CT-based radiomics model for differentiating pneumonia-like primary pulmonary lymphoma from infectious pneumonia: A multicenter study.
Xinxin YU ; Bing KANG ; Pei NIE ; Yan DENG ; Zixin LIU ; Ning MAO ; Yahui AN ; Jingxu XU ; Chencui HUANG ; Yong HUANG ; Yonggao ZHANG ; Yang HOU ; Longjiang ZHANG ; Zhanguo SUN ; Baosen ZHU ; Rongchao SHI ; Shuai ZHANG ; Cong SUN ; Ximing WANG
Chinese Medical Journal 2023;136(10):1188-1197
BACKGROUND:
Pneumonia-like primary pulmonary lymphoma (PPL) was commonly misdiagnosed as infectious pneumonia, leading to delayed treatment. The purpose of this study was to establish a computed tomography (CT)-based radiomics model to differentiate pneumonia-like PPL from infectious pneumonia.
METHODS:
In this retrospective study, 79 patients with pneumonia-like PPL and 176 patients with infectious pneumonia from 12 medical centers were enrolled. Patients from center 1 to center 7 were assigned to the training or validation cohort, and the remaining patients from other centers were used as the external test cohort. Radiomics features were extracted from CT images. A three-step procedure was applied for radiomics feature selection and radiomics signature building, including the inter- and intra-class correlation coefficients (ICCs), a one-way analysis of variance (ANOVA), and least absolute shrinkage and selection operator (LASSO). Univariate and multivariate analyses were used to identify the significant clinicoradiological variables and construct a clinical factor model. Two radiologists reviewed the CT images for the external test set. Performance of the radiomics model, clinical factor model, and each radiologist were assessed by receiver operating characteristic, and area under the curve (AUC) was compared.
RESULTS:
A total of 144 patients (44 with pneumonia-like PPL and 100 infectious pneumonia) were in the training cohort, 38 patients (12 with pneumonia-like PPL and 26 infectious pneumonia) were in the validation cohort, and 73 patients (23 with pneumonia-like PPL and 50 infectious pneumonia) were in the external test cohort. Twenty-three radiomics features were selected to build the radiomics model, which yielded AUCs of 0.95 (95% confidence interval [CI]: 0.94-0.99), 0.93 (95% CI: 0.85-0.98), and 0.94 (95% CI: 0.87-0.99) in the training, validation, and external test cohort, respectively. The AUCs for the two readers and clinical factor model were 0.74 (95% CI: 0.63-0.83), 0.72 (95% CI: 0.62-0.82), and 0.73 (95% CI: 0.62-0.84) in the external test cohort, respectively. The radiomics model outperformed both the readers' interpretation and clinical factor model ( P <0.05).
CONCLUSIONS
The CT-based radiomics model may provide an effective and non-invasive tool to differentiate pneumonia-like PPL from infectious pneumonia, which might provide assistance for clinicians in tailoring precise therapy.
Humans
;
Retrospective Studies
;
Pneumonia/diagnostic imaging*
;
Analysis of Variance
;
Tomography, X-Ray Computed
;
Lymphoma/diagnostic imaging*
8.Artificial Intelligence in Shared Decision Making
Yao LU ; Jianing LIU ; Mian WANG ; Jiajie HUANG ; Baojin HAN ; Mingyao SUN ; Qianji CHENG ; Jinling NING ; Long GE
Medical Journal of Peking Union Medical College Hospital 2023;15(3):661-667
Artificial intelligence(AI) empowers the development of the medical industry, providing precise and intelligent assistance for clinical diagnosis, treatment, and rehabilitation.AI has the potential to facilitate shared decision making (SDM), but AI interventions used for SDM are currently in their infancy, presenting both challenges and opportunities. This paper aims to describe the application of AI in SDM, explore the problems and challenges of AI-based decision aid used for SDM, and propose possible solutions, aiming to provide a guide for the development and implementation of AI-based decision aid.
9.Analysis of IVD gene variants in four children with isovalerate acidemia.
Jianqiang TAN ; Min ZHENG ; Ren CAI ; Ting ZENG ; Biao YIN ; Jinling YANG ; Ba WEI ; Ronni CHANG ; Yongjiang JIANG ; Dejian YUAN ; Lizhen PAN ; Lihua HUANG ; Haiping NING ; Jiangyan WEI ; Dayu CHEN
Chinese Journal of Medical Genetics 2022;39(12):1339-1343
OBJECTIVE:
To detect variants of IVD gene among 4 neonates with suspected isovalerate acidemia in order to provide a guidance for clinical treatment.
METHODS:
111 986 newborns and 7461 hospitalized children with suspected metabolic disorders were screened for acyl carnitine by tandem mass spectrometry. Those showing a significant increase in serum isovaleryl carnitine (C5) were analyzed for urinary organic acid and variants of the IVD gene.
RESULTS:
Four cases of isovalerate acidemia were detected, which included 2 asymptomatic newborns (0.018‰, 2/111 986) and 2 children suspected for metabolic genetic diseases (0.268‰, 2/7461). The formers had no obvious clinical symptoms. Analysis of acyl carnitine has suggested a significant increase in C5, and urinary organic acid analysis has shown an increase in isovaleryl glycine and 3-hydroxyisovalerate. Laboratory tests of the two hospitalized children revealed high blood ammonia, hyperglycemia, decreased red blood cells, white blood cells, platelets and metabolic acidosis. The main clinical manifestations have included sweaty foot-like odor, feeding difficulty, confusion, drowsiness, and coma. Eight variants (5 types) were detected, which included c.158G>A (p.Arg53His), c.214G>A (p.Asp72Asn), c.548C>T (p.Ala183Val), c.757A>G (p.Thr253Ala) and 1208A>G (p.Tyr403Cys). Among these, c.548C>T and c.757A>G were unreported previously. None of the variants was detected by next generation sequencing of 2095 healthy newborns, and all variants were predicted to be likely pathogenic based on the guidelines from the American College of Medical Genetics and Genomics.
CONCLUSION
The incidence of isovalerate acidemia in Liuzhou area is quite high. Screening of metabolic genetic diseases is therefore recommended for newborns with abnormal metabolism. The discovery of novel variants has enriched the mutational spectrum of the IVD gene.
Infant, Newborn
;
Child
;
Humans
;
Acidosis
;
Carnitine
;
Erythrocytes
;
High-Throughput Nucleotide Sequencing
10.Long-term outcomes of 328 patients with of autism spectrum disorder after fecal microbiota transplantation.
Chen YE ; Qi Yi CHEN ; Chun Lian MA ; Xiao Qiong LV ; Bo YANG ; Hong Liang TIAN ; Di ZHAO ; Zhi Liang LIN ; Jia Qu CUI ; Ning LI ; Huanlong QIN
Chinese Journal of Gastrointestinal Surgery 2022;25(9):798-803
Objective: To evaluate the efficacy and safety of fecal microbiota transplantation (FMT) in the treatment of autism spectrum disorder (ASD). Methods: A longitudinal study was conducted. Clinical data from ASD patients with gastrointestinal symptoms and who underwent FMT in the Tenth People's Hospital affiliated to Tongji University or Jinling Hospital between May 2012 to May 2021 were retrospectively collected. Scores derived from the autism behavior checklist (ABC), the childhood autism rating scale (CARS), the Bristol stool form scale (BSFS), and the gastrointestinal symptom rating scale (GSRS) were analyzed at baseline and at the 1st, 3rd, 6th, 12th, 24th, 36th, 48th and 60th month after FMT. Records of any adverse reactions were collected. Generalized estimating equations were used for analysis of data on time points before and after FMT. Results: A total of 328 patients met the inclusion criteria for this study. Their mean age was 6.1±3.4 years old. The cohort included 271 boys and 57 girls. The percentage of patients remaining in the study for post-treatment follow-up at the 1st, 3rd, 12th, 24th, 36th, 48th and 60th month were as follows: 303 (92.4%), 284 (86.7%), 213 (64.9%), 190 (57.9%), 143 (43.6%), 79 (24.1%), 46 (14.0%), 31 (9.5%). After FMT, the average ABC score was significantly improved in the first 36 months and remained improved at the 48th month. However, the average score was not significantly different from baseline by the 60th month (1st-36th month, P<0.001; 48th month, P=0.008; 60th month, P=0.108). The average CARS score improved significantly during the first 48 months and remained improved at the 60th month (1st-48th month, P<0.001; 60th month, P=0.010). The average BSFS score was also significantly improved in the first 36 months (with an accompanying stool morphology that resembled type 4). This improvement was maintained at the 48th month. However, the average score was similar to baseline at the 60th month (1st-36th month, P<0.001; 48th month, P=0.008; 60th month, P=0.109). The average GSRS score was significantly improved during the first 24 months, but not afterwards (1st-24th month, P<0.001; 36th month, P=0.209; 48th month, P=0.996; 60th month, P=0.668). The adverse events recorded during treatment included abdominal distension in 21 cases (6.4%), nausea in 14 cases (4.3%), vomiting in 9 cases (2.7%), abdominal pain in 15 cases (4.6%), diarrhea in 18 cases (5.5%), fever in 13 cases (4.0%), and excitement in 24 cases (7.3%). All adverse reactions were mild to moderate and improved immediately after suspension of FMT or on treatment of symptoms. No serious adverse reactions occurred. Conclusion: FMT has satisfactory long-term efficacy and safety for the treatment of ASD with gastrointestinal symptoms.
Autism Spectrum Disorder/therapy*
;
Child
;
Child, Preschool
;
Fecal Microbiota Transplantation/adverse effects*
;
Feces
;
Female
;
Gastrointestinal Diseases
;
Humans
;
Longitudinal Studies
;
Male
;
Retrospective Studies

Result Analysis
Print
Save
E-mail