1.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
2.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
3.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
4.Phase Change and Quantity-quality Transfer Analysis of Medicinal Materials, Decoction Pieces and Standard Decoction of Haliotidis Concha (Haliotis discus hannai)
Zhihan YANG ; Jingwei ZHOU ; Weichao WANG ; Yu HUANG ; Chuang LUO ; Lian YANG ; Chenyu ZHONG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):206-214
ObjectiveTo explore the quantity-quality transfer process of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(Haliotis discus hannai) by analyzing the physical phase and compositional changes, so as to provide references for the effective control of its quality. MethodsA total of 20 batches of Haliotidis Concha(H. discus hannai) from different habitats were collected and prepared into corresponding calcined products and standard decoction, and the content of CaCO3 of the three samples were determined and the extract yield and transfer rate of CaCO3 were calculated. The changes in elemental composition and their relative contents were investigated by X-ray fluorescence spectrometry(XRF), X-ray diffraction(XRD) was used to study the changes in the phase compositions of the three samples and to establish their respective XRD specific chromatogram. Fourier transform infrared spectrometry(FTIR) was used to study the changes in the chemical composition and content changes of the three samples and to establish their respective FTIR specific chromatogram, while combining hierarchical cluster analysis(HCA), principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) to find the common and differential characteristics, in order to explore the quantity-quality transfer relationship in the preparation process of standard decoction of Haliotidis Concha(H. discus hannai). ResultsThe CaCO3 contents of the 20 batches of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(H. discus hannai) were 93.87%-98.95%, 96.02%-99.97% and 38.29%-51.96%, respectively, and the extract yield of standard decoction was 1.71%-2.37%, and the CaCO3 transfer rate of decoction pieces-standard decoction was 0.68%-1.27%. XRF results showed that the elemental species and their relative contents contained in Haliotidis Concha and its calcined products had a high degree of similarity, and although there was no obvious difference in the elemental species contained in decoction pieces and standard decoction, the difference in the relative contents was obvious, which was mainly reflected in the decrease of the relative content of element Ca and the increase of the relative content of element Na. XRD results showed that Haliotidis Concha mainly contained CaCO3 of aragonite and calcite, while calcined Haliotidis Concha only contained CaCO3 of calcite, and standard decoction mainly contained CaCO3 of calcite and Na2CO3 of natrite. FTIR results showed that there were internal vibrations of O-H, C-H, C=O, HCO3- and CO32- groups in Haliotidis Concha, while O-H, HCO3- and CO32- groups existed in the calcined products and standard decoction. ConclusionThe changes of Haliotidis Concha and calcined Haliotidis Concha are mainly the increase of CaCO3 content, the transformation of CaCO3 aragonite crystal form to calcite crystal form and the absence of organic components after calcination, and the changes of calcined products and standard decoction are mainly the decrease of CaCO3 content and the increase of Na2CO3 relative content. The method established in the study is applicable to the quality control of the shellfish medicines-decoction pieces- standard decoction, which provides a new idea for the study of quality control of dispensing granules of shellfish medicines.
5.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
6.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
7.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
8.Phase Change and Quantity-quality Transfer Analysis of Medicinal Materials, Decoction Pieces and Standard Decoction of Haliotidis Concha (Haliotis discus hannai)
Zhihan YANG ; Jingwei ZHOU ; Weichao WANG ; Yu HUANG ; Chuang LUO ; Lian YANG ; Chenyu ZHONG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):206-214
ObjectiveTo explore the quantity-quality transfer process of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(Haliotis discus hannai) by analyzing the physical phase and compositional changes, so as to provide references for the effective control of its quality. MethodsA total of 20 batches of Haliotidis Concha(H. discus hannai) from different habitats were collected and prepared into corresponding calcined products and standard decoction, and the content of CaCO3 of the three samples were determined and the extract yield and transfer rate of CaCO3 were calculated. The changes in elemental composition and their relative contents were investigated by X-ray fluorescence spectrometry(XRF), X-ray diffraction(XRD) was used to study the changes in the phase compositions of the three samples and to establish their respective XRD specific chromatogram. Fourier transform infrared spectrometry(FTIR) was used to study the changes in the chemical composition and content changes of the three samples and to establish their respective FTIR specific chromatogram, while combining hierarchical cluster analysis(HCA), principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) to find the common and differential characteristics, in order to explore the quantity-quality transfer relationship in the preparation process of standard decoction of Haliotidis Concha(H. discus hannai). ResultsThe CaCO3 contents of the 20 batches of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(H. discus hannai) were 93.87%-98.95%, 96.02%-99.97% and 38.29%-51.96%, respectively, and the extract yield of standard decoction was 1.71%-2.37%, and the CaCO3 transfer rate of decoction pieces-standard decoction was 0.68%-1.27%. XRF results showed that the elemental species and their relative contents contained in Haliotidis Concha and its calcined products had a high degree of similarity, and although there was no obvious difference in the elemental species contained in decoction pieces and standard decoction, the difference in the relative contents was obvious, which was mainly reflected in the decrease of the relative content of element Ca and the increase of the relative content of element Na. XRD results showed that Haliotidis Concha mainly contained CaCO3 of aragonite and calcite, while calcined Haliotidis Concha only contained CaCO3 of calcite, and standard decoction mainly contained CaCO3 of calcite and Na2CO3 of natrite. FTIR results showed that there were internal vibrations of O-H, C-H, C=O, HCO3- and CO32- groups in Haliotidis Concha, while O-H, HCO3- and CO32- groups existed in the calcined products and standard decoction. ConclusionThe changes of Haliotidis Concha and calcined Haliotidis Concha are mainly the increase of CaCO3 content, the transformation of CaCO3 aragonite crystal form to calcite crystal form and the absence of organic components after calcination, and the changes of calcined products and standard decoction are mainly the decrease of CaCO3 content and the increase of Na2CO3 relative content. The method established in the study is applicable to the quality control of the shellfish medicines-decoction pieces- standard decoction, which provides a new idea for the study of quality control of dispensing granules of shellfish medicines.
9.Effect and mechanism of tetramethylpyrazine regulating ferroptosis in rats with spinal cord injury
Jingwei TAO ; Jingya ZHOU ; Yi ZHAO ; Jingpei REN ; Chuanyu HU ; Lin XU ; Xiaohong MU ; Xiao FAN
Chinese Journal of Tissue Engineering Research 2024;28(26):4158-4163
BACKGROUND:Studies have shown that there is a close association between spinal cord injury and ferroptosis,and that tetramethylpyrazine has the function of regulating redox reactions. OBJECTIVE:To investigate the regulatory effect of tetramethylpyrazine on ferroptosis in rats with spinal cord injury and its mechanism. METHODS:Thirty-six female specific pathogen-free Sprague-Dawley rats were randomly divided into sham-operated group,model group and tetramethylpyrazine group,with 12 rats in each group.Animal models of spinal cord injury were established using the modified Allen's method in the latter two groups.No treatment was given in the sham-operated group,while rats in the model and tetramethylpyrazine groups were given intraperitoneal injection of normal saline and tetramethylpyrazine solution,once a day,for 28 days. RESULTS AND CONCLUSION:The Basso,Beattie&Bresnahan Locomotor Rating Scale score in the tetramethylpyrazine group was lower than that in the sham-operated group but higher than that in the model group after 14,21,and 28 days of treatment(P<0.05).After 28 days of treatment,hematoxylin-eosin staining showed that in the model group,the spinal cord tissue of rats showed cavity formation,necrotic tissue and inflammatory infiltration with fibrous tissue formation;in the tetramethylpyrazine group,the area of spinal cord tissue defects was smaller,and inflammatory infiltration and fibrous tissue formation were less than those in the model group.After 28 days of treatment,Prussian blue staining showed that a large amount of iron deposition was seen in the spinal cord tissue of rats in the model group,and less iron deposition was seen in the spinal cord tissue of rats in the tetramethylpyrazine group than in the model group.After 28 days of treatment,the levels of glutathione and superoxide dismutase in the rat spinal cord tissue were decreased(P<0.05)and the level of malondialdehyde was increased in the model group compared with the sham-operated group(P<0.05);the levels of glutathione and superoxide dismutase in the rat spinal cord tissue were increased(P<0.05)and the level of malondialdehyde was decreased in the tetramethylpyrazine group compared with the model group(P<0.05).After 28 days of treatment,qRT-PCR and western blot assay showed that the mRNA and protein levels of glutathione peroxidase 4,ferritin heavy chain,and ferroportin in the rat spinal cord tissue in the model group were decreased compared with those in the sham-operated group(P<0.05),while the mRNA and protein levels of glutathione peroxidase 4,ferritin heavy chain,and ferroportin in the rat spinal cord tissue in the tetramethylpyrazine group were increased compared with those in the model group(P<0.05).Immunofluorescence staining showed that after 28 days of treatment,the neuronal nuclei positive staining in the spinal cord of rats was the most in the sham-operated group and the least in the model group.To conclude,tetramethylpyrazine can improve motor function and play a neuroprotective role in rats with spinal cord injury by regulating ferroptosis.
10.Genome-wide Mendelian randomization study of the pathogenic role of gut microbiota in benign biliary tract diseases
Jingwei ZHAO ; Yucheng HOU ; Ziyi YANG ; Zhe ZHOU ; Wei GONG
Chinese Journal of Surgery 2024;62(3):216-222
Objective:To investigate the causal relationship between intestinal flora and benign biliary diseases by genome-wide Mendelian randomization.Methods:This is a retrospective observational study. The data from the genome-wide association study of the gut microbiota from 18 340 samples from the MiBioGen consortium were selected as the exposure group,and the data from the genome-wide association study of biliary tract diseases were obtained from the FinnGen consortium R8 as the outcome group. There were 1 491 cases of primary sclerosing cholangitis,32 894 cases of cholelithiasis,3 770 cases of acalculous cholecystitis,and 34 461 cases of cholecystitis. Single nucleotide polymorphisms were screened as instrumental variables,and the Mendelian randomization method was used to infer the causal relationship between exposures and outcomes. The inverse variance weighting method (IVW) was used as the main basis, supplemented by heterogeneity,pleiotropy and sensitivity tests.Results:Coprococcus 2 was associated with a reduced risk of cholelithiasis (IVW OR=0.88,95% CI:0.80 to 0.97, P=0.012) and cholecystitis (IVW OR=0.88,95% CI:0.80 to 0.97, P=0.011). Coprococcus 3 was associated with cholelithiasis (IVW OR=1.15,95% CI:1.02 to 1.30, P=0.019) and acalculous cholecystitis(IVW OR=1.48, 95% CI: 1.08 to 2.04, P=0.016) and cholecystitis (IVW OR=1.17, 95% CI: 1.02 to 1.33, P=0.020). Peptococcus was associated with an increased risk of cholelithiasis (IVW OR=1.08, 95% CI:1.02 to 1.13, P=0.005) and cholecystitis (IVW CI=1.07, 95% CI:1.02 to 1.13, P=0.010). Clostridiumsensustricto 1 was associated with an increased risk of cholelithiasis (IVW OR=1.16,95% CI:1.02 to 1.31, P=0.020) and cholecystitis (IVW OR=1.16, 95% CI:1.03 to 1.30, P=0.015). Eubacterium hallii was associated with an increased risk of primary sclerosing cholangitis (IVW OR=1.43, 95% CI: 1.03 to 1.99, P=0.033). Eubacterium ruminantium (IVW OR=0.87, 95% CI: 0.76 to 1.00, P=0.043) and Methanobrevibacter (IVW OR=0.81, 95% CI: 0.68 to 0.98, P=0.027) were associated with a reduced risk of acalculous cholecystitis. Conclusions:Eight intestinal bacterial genera maybe play pathogenic roles in benign biliary diseases. Eubacterium hallii can increase the risk of primary sclerosing cholangitis. Peptococcus and Clostridiumsensustricto 1 can increase the risk of cholelithiasis and generalized cholecystitis. Coprococcus 3 have multiple correlations with biliary stones and inflammation.

Result Analysis
Print
Save
E-mail