1.Guideline-driven clinical decision support for colonoscopy patients using the hierarchical multi-label deep learning method.
Junling WU ; Jun CHEN ; Hanwen ZHANG ; Zhe LUAN ; Yiming ZHAO ; Mengxuan SUN ; Shufang WANG ; Congyong LI ; Zhizhuang ZHAO ; Wei ZHANG ; Yi CHEN ; Jiaqi ZHANG ; Yansheng LI ; Kejia LIU ; Jinghao NIU ; Gang SUN
Chinese Medical Journal 2025;138(20):2631-2639
BACKGROUND:
Over 20 million colonoscopies are performed in China annually. An automatic clinical decision support system (CDSS) with accurate semantic recognition of colonoscopy reports and guideline-based is helpful to relieve the increasing medical burden and standardize the healthcare. In this study, the CDSS was built under a hierarchical-label interpretable classification framework, trained by a state-of-the-art transformer-based model, and validated in a multi-center style.
METHODS:
We conducted stratified sampling on a previously established dataset containing 302,965 electronic colonoscopy reports with pathology, identified 2041 patients' records representative of overall features, and randomly divided into the training and testing sets (7:3). A total of five main labels and 22 sublabels were applied to annotate each record on a network platform, and the data were trained respectively by three pre-training models on Chinese corpus website, including bidirectional encoder representations from transformers (BERT)-base-Chinese (BC), the BERT-wwm-ext-Chinese (BWEC), and ernie-3.0-base-zh (E3BZ). The performance of trained models was subsequently compared with a randomly initialized model, and the preferred model was selected. Model fine-tuning was applied to further enhance the capacity. The system was validated in five other hospitals with 3177 consecutive colonoscopy cases.
RESULTS:
The E3BZ pre-trained model exhibited the best performance, with a 90.18% accuracy and a 69.14% Macro-F1 score overall. The model achieved 100% accuracy in identifying cancer cases and 99.16% for normal cases. In external validation, the model exhibited favorable consistency and good performance among five hospitals.
CONCLUSIONS
The novel CDSS possesses high-level semantic recognition of colonoscopy reports, provides appropriate recommendations, and holds the potential to be a powerful tool for physicians and patients. The hierarchical multi-label strategy and pre-training method should be amendable to manage more medical text in the future.
Humans
;
Colonoscopy/methods*
;
Deep Learning
;
Decision Support Systems, Clinical
;
Female
;
Male

Result Analysis
Print
Save
E-mail