1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Quality evaluation of Sanzi powder based on quantitative analysis of multi-component combined with chemical pattern recognition and entropy weight-TOPSIS method
Rongjie LI ; Qian ZHANG ; Wei ZHANG ; Xinkui LI ; Yuxia HU ; Mengdi ZHANG ; Jing LIU ; Fang WANG ; Fengye ZHOU ; Jun LI
China Pharmacy 2025;36(15):1846-1851
OBJECTIVE To comprehensively evaluate the quality of Sanzi powder from different batches based on 12 components quantitative analysis combined with chemical pattern recognition and entropy weight-TOPSIS method. METHODS The contents of 12 components in 15 batches of Sanzi powder (No. S1-S15) were determined by HPLC-MS/MS, such as ethyl gallate, gallic acid, ferulic acid, corilagin, genipin-1-O-β-D-gentiobioside, toosendanin, geniposide, caffeic acid, methyl deacetylated coumarinate, tannic acid, rutin, quercetin. Cluster analysis (CA), principal component analysis (PCA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) were conducted on the assay results. Using variable importance projection (VIP) value>1 and P<0.05 as the evaluation criteria, the quality differential markers in Sanzi powder were screened. The entropy weight method was used to calculate the weight value, and TOPSIS method was used to rank the quality of 15 batches of Sanzi powder from superior to inferior. RESULTS The contents of the 12 components were 13.494-24.292, 2 069.608-3 188.100, 1.410-3.616, 1 065.030-2 630.584, 1 404.704-1 838.078, 101.640-354.268, 9 193.720-14 777.854, 1.240-5.060, 148.028-5 541.990, 4 261.422-5 607.438, 107.560- 195.512, 2.226-4.192 μg/g, respectively. The results of CA, PCA and OPLS-DA indicated that 15 batches of Sanzi powder could be clustered into two groups. Specifically, batches S3, S7, S10 and S15 were grouped into one category, and remaining batches were grouped into one category. VIP values of geniposide, quercetin, caffeic acid, and methyl deacetylated coumarinate were all greater than 1, with corresponding P-values less than 0.05. The results of the entropy weight-TOPSIS analysis revealed that methyl deacetylate exhibited the smallest information entropy and the highest weight. The relative closeness degrees of samples S3, S7, S10 and S15 ranged from 0.789 to 0.973, while the remaining samples ranged from 0.054 to 0.172. CONCLUSIONS The contents of 12 components in Sanzi powder could be determined accurately by using HPLC-MS/MS technology. Methyl deacetylated coumarinate, geniposide, quercetin and caffeic acid were identified as the quality differential markers. It was found that the overall quality of samples S3, S7, S10 and S15 were superior to that of other batches. Notably, the quality of Gardeniae Fructus decoction pieces emerges as a critical factor in ensuring the consistency of the preparation’s quality.
5.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
6.Strategies for overcoming enrollment challenges of patients in control group in randomized controlled trials of traditional Chinese medicine.
Tian-Tian ZHOU ; Jia-Xin ZUO ; Hong WANG ; Xing LIAO ; Jing HU
China Journal of Chinese Materia Medica 2025;50(7):1980-1986
Randomized controlled trial(RCT) is considered to represent the gold standard for evaluating the efficacy of interventions and has been widely used to evaluate the clinical efficacy of traditional Chinese medicine(TCM). However, there are unique challenges in implementing RCT in TCM. Patients seeking TCM treatment often have preferences for TCM due to the unsatisfactory therapeutic effect of western medicine, their personal intolerance, and their rejection of certain drugs, medical devices, or surgery. Patients are generally reluctant to be randomly assigned to a group, making it challenging to enroll patients in the control group of western medicine during the implementation of RCT in TCM. This has become a prominent problem restricting the implementation of RCT in TCM and needs to be solved urgently. Therefore, this paper introduced commonly used research designs used in solving the problem of enrolling patients in control group during the implementation of RCT in TCM, including Zelen design, partially randomized patient preference trial(PRPP), single-arm objective performance criteria(OPC), cohort studies, single-arm clinical trials using real world data(RWD) alone as the external control group, and the design method based on RWD-augmented control group samples in RCT. The paper outlined the definitions and principles of these methods, evaluated their advantages, disadvantages, and applicable scenarios, and explored their applications in the TCM field, so as to offer insights for solving the difficulty in enrolling patients in the control group during the implementation of RCT in TCM.
Humans
;
Medicine, Chinese Traditional/methods*
;
Randomized Controlled Trials as Topic/methods*
;
Research Design
;
Patient Selection
;
Drugs, Chinese Herbal/therapeutic use*
;
Control Groups
7.Phase changes and quantity-quality transfer of raw material, calcined decoction pieces, and standard decoction of Ostreae Concha (Ostrea rivularis).
Hong-Yi ZHANG ; Jing-Wei ZHOU ; Jia-Wen LIU ; Wen-Bo FEI ; Shi-Ru HUANG ; Yu-Mei CHEN ; Chong-Yang LI ; Fei-Fei LI ; Qiao-Ling MA ; Fu WANG ; Yuan HU ; You-Ping LIU ; Shi-Lin CHEN ; Lin CHEN ; Hong-Ping CHEN
China Journal of Chinese Materia Medica 2025;50(5):1209-1223
The phase changes and quantity-quality transfer of 17 batches of Ostreae Concha(Ostrea rivularis) during the raw material-calcined decoction pieces-standard decoction process were analyzed. The content of calcium carbonate(CaCO_3), the main component, was determined by chemical titration, and the extract yield and transfer rate were calculated. The CaCO_3 content in the raw material, calcined decoction pieces, and standard decoction was 94.39%-98.80%, 95.03%-99.22%, and 84.58%-90.47%, respectively. The process of raw material to calcined decoction pieces showed the yield range of 96.85% to 98.55% and the CaCO_3 transfer rate range of 96.92% to 99.27%. The process of calcined decoction pieces to standard decoction showed the extract yield range of 2.86% to 5.48% and the CaCO_3 transfer rate range of 2.59% to 5.13%. The results of X-ray fluorescence(XRF) assay showed that the raw material, calcined decoction pieces, and standard decoction mainly contained Ca, Na, Mg, Si, Br, Cl, Al, Fe, Cr, Mn, and K. The chemometric results showed an increase in the relative content of Cr, Fe, and Si from raw material to calcined decoction pieces and an increase in the relative content of Mg, Al, Br, K, Cl, and Na from calcined decoction pieces to standard decoction. X-ray diffraction(XRD) was employed to establish XRD characteristic patterns of the raw material, calcined decoction pieces, and standard decoction. The XRD results showed that the main phase of all three was calcite, and no transformation of crystalline form or generation of new phase was observed. Fourier transform infrared spectroscopy(FTIR) was employed to establish the FTIR characteristic spectra of the raw material, calcined decoction pieces, and standard decoction. The FTIR results showed that the raw material had internal vibrations of O-H, C-H, C=O, C-O, and CO■ groups. Due to the loss of organic matter components after calcination, no information about the vibrations of C-H, C=O, and C-O groups was observed in the spectra of calcined decoction pieces and standard decoction. In summary, this study elucidated the quantity-quality transfer and phase changes in the raw material-calcined decoction pieces-standard decoction process by determining the CaCO_3 content, calculating the extract yield and transfer rate, and comparing the element changes, FTIR characteristic spectra, and XRD characteristic pattern. The results were reasonable and reliable, laying a foundation for the subsequent process research and quality control of the formula granules of calcined Ostreae Concha(O. rivularis Gould), and providing ideas and methods for the quality control of the whole process of raw material-decoction pieces-standard decoction-formula granules of Ostreae Concha and other testacean traditional Chinese medicine.
Drugs, Chinese Herbal/isolation & purification*
;
Calcium Carbonate/analysis*
;
Quality Control
8.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
9.The research on the mechanism of GBP2 promoting the progression of silicosis by inducing macrophage polarization and epithelial cell transformation.
Maoqian CHEN ; Jing WU ; Xuan LI ; Jiawei ZHOU ; Yafeng LIU ; Jianqiang GUO ; Anqi CHENG ; Dong HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):611-619
Objective This study aims to investigate the expression, phenotypic changes, and mechanisms of action of guanylate-binding protein 2 (GBP2) in the process of silica-induced pulmonary fibrosis. Methods The expression and localization of GBP2 in silicotic lung tissue were detected by immunohistochemical staining and immunofluorescence. An in vitro cell model was constructed, and methods such as Western blot and real-time quantitative reverse transcription polymerasechain reaction were utilized to investigate the function of GBP2 in different cell lines following silica stimulation. The mechanism of action of GBP2 in various cell lines was elucidated using Western blot analysis. Results GBP2 was highly expressed in the lung tissue of patients with silicosis. Immunohistochemical staining and immunofluorescence have revealed that GBP2 was localized in macrophages and epithelial cells. In vitro cell experiments demonstrated that silicon dioxide stimulated THP-1 cells to activate the c-Jun pathway through GBP2, promoting the secretion of inflammatory factors and facilitating the occurrence of M2 macrophage polarization. In epithelial cells, GBP2 promoted the occurrence of epithelial to mesenchymal transition (EMT) by upregulating Krueppel-like factor 8 (KLF8). Conclusion GBP2 not only activates c-Jun in macrophages to promote the production of inflammatory factors and the occurrence of M2 macrophage polarization, but also activates the transcription factor KLF8 in epithelial cells to induce EMT, collectively promoting the progression of silicosis.
Humans
;
Silicosis/genetics*
;
Macrophages/cytology*
;
Epithelial Cells/pathology*
;
GTP-Binding Proteins/physiology*
;
Epithelial-Mesenchymal Transition
;
Disease Progression
;
Cell Line
;
Male
10.Family socioeconomic status and children's reading fluency: the chain mediating role of family reading environment and children's living and learning styles.
Wen-Xin HU ; Lei ZHANG ; Cai WANG ; Zi-Yue WANG ; Jia-Min XU ; Jing-Yu WANG ; Jia ZHOU ; Wen-Min WANG ; Meng-Meng YAO ; Xia CHI
Chinese Journal of Contemporary Pediatrics 2025;27(4):451-457
OBJECTIVES:
To study the impact of family socioeconomic status on children's reading fluency and the chain mediation effect of family reading environment and children's living and learning styles in this relationship.
METHODS:
A total of 473 children from grades 2 to 6 in two primary schools in Nanjing were selected through stratified random sampling. The children's reading fluency was assessed, and a questionnaire was used to collect information on family socioeconomic status, family reading environment, and children's living and learning styles. The mediation model was established using the Process macro in SPSS, and the Bootstrap method was employed to test the significance of the mediation effects.
RESULTS:
Family socioeconomic status, family reading environment, and children's living and learning styles were significantly positively correlated with reading fluency (P<0.001). The family reading environment and children's living and learning styles mediated the relationship between family socioeconomic status and children's reading fluency. Specifically, the independent mediation effect of family reading environment accounted for 11.02% of the total effect, while the independent mediation effect of children's living and learning styles accounted for 10.79%. The chain mediation effect of family reading environment and children's living and learning styles accounted for 7.41% of the total effect.
CONCLUSIONS
Family socioeconomic status can affect children's reading fluency through three pathways: family reading environment, children's living and learning styles, and the chain mediation effect of family reading environment and children's living and learning styles.
Humans
;
Child
;
Male
;
Female
;
Reading
;
Learning
;
Social Class
;
Family

Result Analysis
Print
Save
E-mail