1.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
2.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
3.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
4.XK gene deletion leading to McLeod syndrome and high-frequency antigen antibodies: identification and transfusion strategy
Jing LI ; Kewen YAO ; Yun DU ; Haiyan HU ; Hongli ZHANG
Chinese Journal of Blood Transfusion 2025;38(8):1107-1112
Objective: To investigate the hematological characteristics of the rare McLeod phenotype associated with X-linked chronic granulomatous disease, KEL and XK gene analysis, identification of unexpected antibodies, serological characteristics of high-frequency antigen antibodies, and transfusion strategies. Methods: Serological methods were employed to determine the ABO, Rh, and other blood group system antigen phenotypes of the child, along with screening and identification of unexpected antibodies. The titers of high-frequency antigen antibodies were measured using tube antihuman globulin and microcolumn gel card techniques. Kell blood group typing was performed using serological and genotyping methods, while XK gene sequencing was conducted via next-generation sequencing. Peripheral blood smears from the child's mother were examined for erythrocyte morphology. Results: The child's serological results were as follows: blood group O, ccDEE, MM, Le(a-b+), JK(a+b+), Fy(a+b-), and Kell phenotype K-k+, Kp(a-b+). Plasma analysis revealed alloantibodies anti-C、e, as well as a high-frequency antigen antibody anti-KL, with titers of 512 (tube method) and 2 048 (microcolumn gel method). Genotyping results showed KEL genotype K-k+, Kp(a-b+), Js(a-b+), while XK gene NGS identified a hemizygous deletion of exons 1-3 (XK
N. 01), consistent with XK: -1 or Kx-(McLeod). The mother's peripheral blood smear exhibited prominent acanthocytes. Conclusion: The hematological features of this rare McLeod phenotype with X-CGD include weakened Kell antigen expression and a complete exon deletion in the XK gene. Early clinical attention should be given to the symptoms and laboratory diagnosis of X-linked chronic granulomatous disease in pediatric patients. XK genotyping for McLeod phenotype should be prioritized to guide cautious transfusion strategies, preventing life-threatening complications due to incompatible blood products.
5.Effect of high fat diet intake on pharmacokinetics of metronidazole tablets in healthy Chinese volunteers
Na ZHAO ; Cai-Hui GUO ; Ya-Li LIU ; Hao-Jing SONG ; Ben SHI ; Yi-Ting HU ; Cai-Yun JIA ; Zhan-Jun DONG
The Chinese Journal of Clinical Pharmacology 2024;40(1):102-106
Objective To evaluate the effects of high-fat diet on the pharmacokinetics of metronidazole in Chinese healthy adult subjects.Methods This program is designed according to a single-center,randomized,open,single-dose trial.Forty-seven healthy subjects were assigned to receive single dose of metronidazole tablets 200 mg in either fasting and high-fat diet state,and blood samples were taken at different time points,respectively.The concentrations of metronidazole in plasma were determined by high performance liquid chromatography-mass spectromentry.Results The main pharmacokinetic parameters of metronidazole in fasting state and high-fat diet state were as follows:Cmax were(4 799.13±1 195.32)and(4 044.17±773.98)ng·mL-1;tmax were 1.00 and 2.25 h;t1/2 were(9.11±1.73)and(9.37±1.79)h;AUC0_t were(5.59±1.19)x 104 and(5.51±1.18)x 104 ng·mL-1·h;AUC0_∞ were(5.79±1.33)x 104 and(5.74±1.32)× 104 ng·mL-1·h.Compared to the fasting state,the tmaxof the drug taken after a high fat diet was delayed by 1.25 h(P<0.01),Cmax,AUC0_t,AUC0-∞ were less or decreased in different degrees,but the effects were small(all P>0.05).Conclusion High-fat diet has little effects on the pharmacokinetic parameters of metronidazole,which does not significantly change the degree of drug absorption,but can significantly delay the time to peak.
6.Effects of vitexin on rats with chronic obstructive pulmonary disease
Li-Ying LAI ; Xiao-Jing LIU ; Cong-Yun LEI ; Xiu-Chun YE
The Chinese Journal of Clinical Pharmacology 2024;40(2):210-214
Objective To study the effect of vitexin inhibiting Ras homology C(RhoC)/Rho-associated kinase(ROCK)signaling on lung inflammation and airway remodeling in rats with chronic obstructive pulmonary disease.Methods SD rats were divided into control group,model group(chronic obstructive pulmonary disease model),experimental-L group(chronic obstructive pulmonary disease model,1.5 mg·kg-1 vitexin treatment),experimental-M group(chronic obstructive pulmonary disease model,3.0 mg·kg-1 vitexin treatment),experimental-H group(chronic obstructive pulmonary disease model,6.0 mg·kg-1 vitexin treatment),experimental-H+LPA group(chronic obstructive pulmonary disease mode,6.0 mg·kg-1 vitexin,lysophosphatidic acid 1 mg treatment),Western blot detection of RhoC protein expression,detection of pulmonary function indexes in rats,hematoxylin-eosin staining to observe lung histopathology,and evaluation of airway inflammation in rats score,airway smooth muscle thickness,enzyme-linked immunosorbent assay method to detect interleukin-6(IL-6)content in bronchoalveolar lavage fluid,immunohistochemistry to detect basic fibroblast growth factor(bFGF)in lung tissue.Results The expression levels of RhoC protein in the control group,model group,experimental-H group,and experimental-H+LPA group were 0.25±0.02,0.71±0.09,0.31±0.03,0.47±0.04;forced vital capacity(FVC)were(8.25±0.62),(4.12±0.24),(7.21±0.54),(6.44±0.52)mL;inflammation score were 0.52±0.04,2.54±0.15,1.23±0.11,1.79±0.32;smooth muscle thickness were(19.28±1.52),(28.43±1.74),(19.45±1.18),(25.85±1.57)μm;IL-6 content were(2.40±0.08),(5.67±0.44),(2.85±0.23),(4.01±0.29)ng·L-1;bFGF protein expression were 0.19±0.02,0.52±0.05,0.24±0.02,0.43±0.05.There were statistically significant differences in the above indicators between the model group and the control group,between the experimental-H group and the model group,and between the experimental-H+LPA group and the experimental-H group(all P<0.05).Conclusion Vitexin inhibits RhoC/Rock signaling to improve lung inflammation and airway remodeling in chronic obstructive pulmonary disease rats.
7.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
8.Therapeutic effects of osthol on acute pancreatitis model rats
Hai-Yun GAO ; Li-Jing SHEN ; Hai-Rong LIU ; Xue-Zhen WANG ; Yi-Fei ZHANG ; Jia LI
The Chinese Journal of Clinical Pharmacology 2024;40(3):403-407
Objective To investigate the therapeutic effect of cnithol on acute pancreatitis(AP)rats and its regulatory mechanism on phosphoinositol 3-kinase(PI3K)/protein kinase B(Akt)signaling pathway.Methods SPF-grade SD male rats were randomly divided into control group,model group(50 μg·kg-1 hyranin+10 mg·kg-1 LPS),positive control group(2 mg·kg-1 dexamethasone),experimental-L group(20 mg·kg-1 osthol)and experimental-H group(40 mg·kg-1 osthol),experimental-H+740Y-P group(40 mg·kg-1 osthol+2 mg·kg-1 PI3K activator 740Y-P),15 mice in each group.The activities of amylase and lipase in serum of rats were detected by automatic biochemical analyzer 24 h after the last administration.The levels of inflammatory factors tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6)in serum,the content of malondialdehyde(MDA)and the activity of superoxide dismutase(SOD)in pancreas were detected by enzyme-linked immunosorbent assay(ELISA).Hematoxylin-eosin(HE)staining was used to observe the pathological changes of pancreatic tissue and score the pathological damage.Western blot was used to detect the expression of PI3K/Akt pathway related proteins in rat pancreas.Results The activities of serum amylase in control group,model group,positive control group,experimental-H group and experimental-H+740Y-P group were(135.67±12.89),(1 027.84±32.16),(174.31±15.27),(186.70±17.39)and(835.92±28.78)U·mL-1,respectively;the contents of TNF-α were(35.69±3.10),(223.54±15.23),(48.76±4.25),(52.31±4.68)and(208.46±13.65)pg·mL-1,respectively;the contents of MDA were(2.15±0.14),(6.37±0.42),(2.78±0.17),(2.81±0.15)and(5.96±0.36)nmol·mg-1,respectively;the histopathological injury scores were 1.12±0.07,10.23±0.38,3.14±0.21,3.25±0.23 and 9.68±0.40,respectively;p-PI3K/PI3K ratios were 0.82±0.05,1.96±0.15,1.07±0.06,1.10±0.07 and 1.69±0.14,respectively.The above indexes were compared with the control group in the model group,the positive control group,experimental-H group and the model group,and the above indexes of experimental-H+740Y-P group and experimental-H group,and the differences were statistically significant(all P<0.05).Conclusion Gossetin can play a therapeutic role in AP,and its mechanism may be related to the inhibition of PI3K/Akt signaling pathway.
9.Cardamomine attenuates cardiotoxicity induced by anthracyclines in rats by regulating Notch/NF-κB signal pathway mediated pyroptosis
Xiao-Lei YU ; Wen-Xin LI ; Pan-Pan CHEN ; Yun-Fei LIANG ; Yan-Rong CUI ; Hai-Jing JIAO ; Fan XU
The Chinese Journal of Clinical Pharmacology 2024;40(9):1277-1281
Objective To investigate the protective effect of cardamomine(CAR)on anthracycline-induced cardiotoxicity in rats by regulating the pyroptosis mediated by Notch/nuclear factor-κB(NF-κB)signal pathway.Methods The rat model of cardiotoxicity was established by intraperitoneal injection of doxorubicin(DOX).The model rats were randomly divided into DOX group,CAR-L group,CAR-H group and Jagged1 group.Another 10 rats were taken as the control group.The control group and the DOX group were given the same amount of 0.9%NaCl.The CAR-L group and CAR-H group were given 40 and 80 mg·kg-1 CAR by gavage,respectively.The Jagged1 group was given 80 mg·kg-1 CAR+and 25 ng·kg-1 Jagged1 by gavage once a day for 4 weeks.Myocardial injury markers creatine kinase isoenzyme(CK-MB)and troponin Ⅰ(cTn Ⅰ)were detected by kit.The expression of pyroptosis protein Nod-like receptor protein 3(NLRP3)and desquamate D(GSDM-D)were observed by immunohistochemistry.The expression of Notch1 and phosphorylated NF-κB p65(p-NF-κB p65)protein in myocardial tissue was detected by Western blotting.Results The levels of CK-MB in control group,DOX group,CAR-L group,CAR-H group and Jagged1 group were(48.51±5.39),(175.93±13.27),(106.83±9.73),(83.71±8.39)and(126.08±9.74)U·L-1;the levels of cTn Ⅰ were(1.95±0.18),(12.46±1.83),(7.15±0.64),(4.13±0.38)and(8.01±0.78)ng·mL-1;the average optical density of NLRP3 protein were 0.19±0.07,0.36±0.05,0.25±0.05,0.21±0.03 and 0.31±0.06;the average optical density of GSDM-D were 0.18±0.04,0.43±0.06,0.24±0.03,0.19±0.04 and 0.32±0.05.There were significant differences in the above indexes between DOX group and control group(all P<0.05).There were significant differences in the above indexes between CAR-L group,CAR-H group and DOX group(all P<0.05),and there were significant differences between CAR-L group and CAR-H group(all P<0.05).The above indexes in Jagged1 group were significantly different from those in CAR-H group(all P<0.05).Conclusion CAR can improve myocardial injury in DOX cardiotoxic rats,reduce oxidative stress,inflammatory reaction and pyroptosis,and its mechanism may be related to the inhibition of Notch/NF-κB pathway.
10.Biomechanopharmacological Study of Panax notoginseng Saponins on High Shear-induced Platelet Aggregation and Thrombosis
Yilin WANG ; Jia LI ; Lu LIU ; Ping GONG ; Jing XU ; Fulong LIAO ; Yun YOU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):111-120
ObjectiveTo investigate the mechanisms of Panax notoginseng saponins (PNS) in inhibiting high shear-induced platelet aggregation and thrombosis via the Piezo1-mediated calcium signaling pathway. MethodBioflux1000z was used for the microfluidic assay, where platelets were stimulated with physiological shear rate (500 s-1), pathological shear rate (12 000 s-1), or Piezo1 agonist Yoda1 under the physiological shear rate (500 s-1). The shear-induced platelet calcium influx and the binding of platelet with von Willebrand factor (vWF) were measured by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the vWF release from platelets. The microfluidic channels were used to determine the vWF-mediated platelet aggregation and integrin αⅡbβ3 activation. A mouse model of arterial thrombosis induced by high shear stress combined with endothelial injury was established. The ultrasonic Doppler flow meter was used to monitor the cyclic flow reduction (CFR) caused by the repeated formation and shedding of thrombi, and flow cytometry was employed to examine platelet-vWF binding, on the basis of which the effect of PNS on high shear-induced arterial thrombosis was evaluated. ResultThe microfluidic assay showed that PNS decreased the high shear rate (12 000 s-1) or Yoda1-induced calcium influx, platelet-vWF binding, vWF-mediated platelet-fibrinogen binding, and vWF release from platelet alpha-granules in a dose-dependent manner. In the mouse model of high shear-induced thrombosis, PNS markedly reduced the CFR and occlusion time of the common carotid artery and inhibited platelet-vWF binding. ConclusionPNS can mitigate pathological shear-induced platelet aggregation and arterial thrombosis via influencing Piezo1/GPIbα-vWF signaling.

Result Analysis
Print
Save
E-mail