1.Epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome in Zhejiang Province
LÜ ; Jing ; XU Xinying ; QIAO Yingyi ; SHI Xinglong ; YUE Fang ; LIU Ying ; CHENG Chuanlong ; ZHANG Yuqi ; SUN Jimin ; LI Xiujun
Journal of Preventive Medicine 2026;38(1):10-14
Objective:
To analyze the epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome (SFTS) in Zhejiang Province from 2019 to 2023, so as to provide the reference for strengthening SFTS prevention and control.
Methods:
Data on laboratory-confirmed SFTS cases in Zhejiang Province from 2019 to 2023 were collected through the Infectious Disease Reporting Information System of Chinese Disease Prevention and Control Information System. Meteorological data, geographic environment and socioeconomic factors during the same period were collected from the fifth-generation European Centre for Medium-Range Weather Forecasts, Geospatial Data Cloud, and Zhejiang Statistical Yearbook, respectively. Descriptive epidemiological methods were used to analyze the epidemiological characteristics of SFTS from 2019 to 2023, and a Bayesian spatio-temporal model was constructed to analyze the influencing factors of SFTS incidence.
Results:
A total of 578 SFTS cases were reported in Zhejiang Province from 2019 to 2023, with an annual average incidence of 0.23/105. The peak period was from May to July, accounting for 52.60%. There were 309 males and 269 females, with a male-to-female ratio of 1.15∶1. The cases were mainly aged 50-<80 years, farmers, and in rural areas, accounting for 82.53%, 77.34%, and 75.43%, respectively. Taizhou City and Shaoxing City reported more SFTS cases, while Shaoxing City and Zhoushan City had higher annual average incidences of SFTS. The Bayesian spatio-temporal interaction model showed good goodness of fit. The results showed that mean temperature (RR=1.626, 95%CI: 1.111-2.378) and mean wind speed (RR=1.814, 95%CI: 1.321-2.492) were positively correlated with SFTS risk, while altitude (RR=0.432, 95%CI: 0.230-0.829) and population density (RR=0.443, 95%CI: 0.207-0.964) were negatively correlated with SFTS risk.
Conclusions
SFTS in Zhejiang Province peaks from May to July. Middle-aged and elderly people and farmers are high-risk populations. Taizhou City, Shaoxing City, and Zhoushan City are high-incidence areas. Mean temperature, mean wind speed, altitude, and population density can all affect the risk of SFTS incidence.
2.Exploring Multi-target Effect of Erzhiwan on Improving Myocardial Injury in Ovariectomized Mice Based on Non-targeted Metabolomics
Ying YANG ; Jing HU ; Pei LI ; Ruyuan ZHU ; Zhiguo ZHANG ; Haixia LIU ; Yanjing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):74-84
ObjectiveTo explore the target of Erzhiwan in reducing myocardial injury in ovariectomized mice through non-targeted myocardial metabolomics combined with experimental verification. MethodsOvariectomized mouse model was selected, 40 female C57BL/6 mice were randomly divided into sham operation group, model group, estrogen group(estradiol valerate, 1.3×10-4 g·kg-1), Erzhiwan low and high dose groups(3.12, 9.36 g·kg-1), with 8 mice in each group. Each administration group was given the corresponding dose of Erzhiwan by gavage, and the sham operation group and model group were given equal volume of distilled water by gavage for 12 weeks. Echocardiography was used to detect cardiac function, hematoxylin-eosin(HE) staining was used to observe myocardial morphological changes, and enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of estrogen, N-terminal pro-brain natriuretic peptide(NT-proBNP), hypersensitive troponin T(hs-TnT), total cholesterol(TC), triglyceride(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), interleukin(IL)-1β, IL-18 and tumor necrosis factor-α(TNF-α). The non-targeted metabolomics of mouse myocardium were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the differential metabolites and corresponding metabolic pathways were obtained. The mRNA expression levels of phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in mouse myocardial tissues were detected by real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the protein expression levels of PI3K, Akt, phosphorylated(p)-Akt were detected by Western blot. ResultsCompared with the sham operation group, the model group showed abnormal cardiac function, increased myocardial fiber space, cardiomyocyte atrophy, sarcoplasmic aggregation, and occasional dissolution or rupture of muscle fiber, the level of estrogen in the serum was decreased, the levels of NT-proBNP, hs-TnT, IL-1β, IL-18, TNF-α, TG, TC and LDL-C were increased, and the level of HDL-C was decreased(P<0.01). Compared with the model group, Erzhiwan could increase the level of estrogen, improve the abnormal cardiac function, reduce the pathological injury of myocardial tissue, decrease the levels of myocardial injury markers(NT-proBNP, hs-TnT) and inflammatory factors(IL-1β, IL-18, TNF-α), decrease the levels of TG, TC, LDL-C, and increased the level of HDL-C(P<0.01). The results of non-targeted myocardial metabolomics showed that 31 of the 162 differential metabolites between the model group and sham operation group were significantly adjusted after administration of Erzhiwan, which were mainly glycerol phospholipid metabolites. Pathway enrichment results showed that Erzhiwan mainly affected glycerophospholipid metabolic pathway, PI3K-Akt pathway, cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG) pathway and other metabolic pathways. Compared with the sham operation group, the levels of phosphatidylcholine(PC, 11 types) and phosphatidylethanolamine(PE, 5 types) in mouse myocardial tissue of the model group were increased(P<0.05, P<0.01), and the mRNA and protein expressions of PI3K and p-Akt were decreased(P<0.05, P<0.01). Compared with the model group, the levels of PC(11 types) and PE(5 types) were decreased(P<0.05, P<0.01) in myocardial tissue of Erzhiwan group, the mRNA and protein expressions of PI3K and p-Akt were elevated(P<0.01). ConclusionErzhiwan can alleviate the pathological injury of myocardium in ovariectomized mice, improve the abnormal cardiac function, improve lipid metabolism disorder, and reduce the levels of myocardial injury markers and inflammatory factors, which involves a number of signaling and metabolic pathways in the heart, among which glycerophospholipid metabolism pathway and PI3K/Akt pathway may have key roles.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Lactate Transferase Function of Alanyl-transfer t-RNA Synthetase and Its Relationship With Exercise
Ying-Ying SUN ; Zheng XING ; Feng-Yi LI ; Jing ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1337-1348
Lactylation (Kla), a protein post-translational modification characterized by the covalent conjugation of lactyl groups to lysine residues in proteins, is widely present in living organisms. Since its discovery in 2019, it has attracted much attention for its role in regulating major pathological processes such as tumorigenesis, neurodegenerative diseases, and cardiovascular diseases. By mediating core biological processes such as signal transduction, epigenetic regulation, and metabolic homeostasis, lactylation contributes to disease progression. However, the lactylation donor lactyl-CoA has a low intracellular concentration, and the specific enzyme catalyzing lactylation is not yet clear, which has become an urgent issue in lactate research. A groundbreaking study in 2024 found that alanyl-transfer t-RNA synthetase 1/2 (AARS1/2), members of the aminoacyl-tRNA synthetase (aaRS) family, can act as protein lysine lactate transferases, modifying histones and metabolic enzymes directly with lactate as a substrate, without relying on the classical substrate lactyl-CoA, promoting a new stage in lactate research. Although exercise significantly increases lactate levels in the body and can induce changes in lactylation in multiple tissues and cells, the regulation of lactylation by exercise is not entirely consistent with lactate levels. Research has found that high-intensity exercise can induce upregulation of lactate at 37 lysine sites in 25 proteins of adipose tissue, while leading to downregulation of lactate at 27 lysine sites in 22 proteins. The level of lactate is not the only factor regulating lactylation through exercise. We speculate that the lactate transferase AARS1/2 play an important role in the process of lactylation regulated by exercise, and AARS1/2 should also be regulated by exercise. This review introduces the molecular biology characteristics, subcellular localization, and multifaceted biological functions of AARS, including its canonical roles in alanylation and editing, as well as its newly identified lactate transferase activity. We detail the discovery of AARS1/2 as lactylation catalysts and the specific process of them as lactate transferases catalyzing protein lactylation. Furthermore, we discuss the pathophysiological significance of AARS in tumorigenesis, immune dysregulation, and neuropathy, with a focus on exploring the expression regulation and possible mechanisms of AARS through exercise. The expression of AARS in skeletal muscle regulated by exercise is related to exercise time and muscle fiber type; the skeletal muscle AARS2 upregulated by long-term and high-intensity exercise catalyzes the lactylation of key metabolic enzymes such as pyruvate dehydrogenase E1 alpha subunit (PDHA1) and carnitine palmitoyltransferase 2 (CPT2), reducing exercise capacity and providing exercise protection; physiological hypoxia caused by exercise significantly reduces the ubiquitination degradation of AARS2 by inhibiting its hydroxylation, thereby maintaining high levels of AARS2 protein and exerting lactate transferase function; exercise induced lactate production can promote the translocation of AARS1 cytoplasm to the nucleus, exert lactate transferase function upon nuclear entry, regulate histone lactylation, and participate in gene expression regulation; exercise induced lactate production promotes direct interactions between AARS and star molecules such as p53 and cGAS, and is widely involved in the occurrence and development of tumors and immune diseases. Elucidating the regulatory mechanism of exercise on AARS can provide new ideas for improving metabolic diseases and promote health through exercise.
7.Impact of rigid container material type and loading volume on the sterilization of thoracoscopic instruments
Xue'e FANG ; Yanjun MAO ; Qiuping ZHU ; Yanni CAI ; Jing SHU ; Guifen ZHANG ; Yichun JIN ; Minye TANG ; Ying TAO ; Huiting HU
Shanghai Journal of Preventive Medicine 2025;37(8):697-699
ObjectiveTo explore the impacts of material type and loading volume of rigid containers on the hydrogen peroxide low temperature plasma sterilization of thoracoscopic instruments, to identify the best rigid containers and loading volume of thoracoscopic instruments. MethodsThoracoscopic instruments sterilized by STERRAD® 100NX hydrogen peroxide low temperature plasma in Shanghai Pulmonary Hospital affiliated to Tongji University from August to September 2024 were selected as the research items. According to the material of rigid containers, the instruments were divided into polyethylene case group (A), stainless steel case group (B) and silicone resin case group (C). In terms of the loading volume, the rigid containers were divided into (loading capacity <80%) groups of 8, 10 and 12 instruments. The results of physical monitoring, the first type of chemical indicator card monitoring, and the five types of card luminal chemical process challenge device (PCD) monitoring of the 9 groups of A8, A10, A12, B8, B10, B12, C8, C10 and C12 were compared and evaluated. ResultsCompared to A8, A10 A12, C8, C10 or C12 groups, the thoracoscope instruments in the stainless steel containers in B8, B10 or B12 group had higher hydrogen peroxide concentrations and shorter elapsed time in the pressure check phases 1 and phases 2, with the differences statistically significant (P<0.05), followed by the silicone resin case group and the polyethylene case group. The nine groups of physical parameter monitoring, the first type of chemical indicator monitoring, and the five types of chemical PCD monitoring for lumen sterilization achieved 100% qualification rates, and there were no significant differences in the qualified rates of sterilization among the 9 groups (P>0.05). ConclusionWhen using hydrogen peroxide low temperature plasma to sterilize thoracoscopic instruments, it is recommended to use stainless steel or silicone resin rigid containers with a controlled loading capacity (≤12) to ensure optimal sterilization quality.
8.Analysis of the current situation and influencing factors of comorbidity of depressive and anxiety symptoms among middle school students in Chongqing
LI Xia, XIONG Ying, YANG Siwei, ZHANG Jing, PENG Chang, LI Mengfen, WANG Hong
Chinese Journal of School Health 2025;46(10):1443-1448
Objective:
To understand the current situation and influencing factors of comorbidity of depressive and anxiety symptoms among middle school students in Chongqing, so as to provide a scientific basis for formulating a comprehensive strategy for the co prevention of multiple diseases among middle school students.
Methods:
From September to December 2024, 12 327 middle school students were selected from 6 districts and counties in Chongqing by the combination of stratified cluster sampling and convenience sampling method. The current status of depressive and anxiety symptoms was investigated by using the Center for Epidemiological Survey-Depression Scale (CES-D) and the Generalized Anxiety Disorder-7 (GAD-7). The Chi-squared test was used to compare the differences between groups with comorbidity of depressive and anxiety symptoms, multivariate Logistic regression analysis was used to analyze its related factors, and a nomogram prediction model was drawn.
Results:
The detection rates of depressive symptoms, anxiety symptoms and comorbidity among middle school students in Chongqing were 26.34%, 34.55% and 21.16%, respectively. Among them, the detection rates of the three types of symptoms in girls (29.80%, 40.99%, 25.15%) were all higher than those in boys (23.22%, 28.73%, 17.55%) ( χ 2=68.61, 204.23, 106.51, all P <0.01). Statistical significance was observed in the distribution of depressive and anxious symptoms among middle school students across different gender, academic stage, school district, family type, physical activity levels, parental discipline, smoking, alcohol consumption, sleep deprivation, excessive screen time, Internet addiction, and bullying ( χ 2=14.49-991.46, all P <0.01). Multivariate Logistic regression analysis showed that compared with junior high school students, ordinary high school students had a higher risk of comorbidity ( OR=2.71, 95% CI = 2.41-3.05); girls ( OR=2.17, 95%CI =1.95-2.40), non-core family ( OR=1.20, 95%CI =1.08-1.32), and good neighborhood ( OR=1.16, 95%CI =1.02-1.30), campus bullying ( OR=4.88, 95%CI =4.32-5.50), Internet addiction ( OR=4.77, 95%CI = 3.41 -6.68), parental beating and scolding ( OR=3.18, 95%CI =2.72-3.71), alcohol consumption ( OR=2.10, 95%CI =1.86- 2.37 ), and insufficient sleep ( OR=1.73, 95%CI =1.54-1.95) had higher risks with comorbidity of depression and anxiety symptoms (all P <0.05). A nomogram prediction model was constructed based on significant variables shows that C-index=0.75 (AUC= 0.75 , 95% CI=0.74-0.76, P <0.05), and the model had good predictive performance.
Conclusions
The current situation of comorbidity of depressive and anxiety symptoms among middle school students in Chongqing is not optimistic. The nomograms can be used to effectively predict the risk of comorbidity of depressive and anxiety symptoms in middle school students.
9.Disease burden of coal workers' pneumoconiosis in China from 1990 to 2021 and projection of future trends: Based on the Global Burden of Disease Study of 2021
Guoqiang DONG ; Ying ZHANG ; Lichun QIAO ; Miaoqian LI ; Ronghui LEI ; Xiangyu FAN ; Ying LIU ; Xinxin WEI ; Jing HAN
Journal of Environmental and Occupational Medicine 2025;42(10):1162-1169
Background China is a major coal producer and consumer country in the world. Coal workers' pneumoconiosis (CWP) is a primary factor endangering the occupational health of coal miners. Research on the disease burden of CWP and its changing trend is significant for disease prevention & control and associated policies. Objective To analyze the disease burden of CWP in China from 1990 to 2021 and its changing trend, and predict the disease burden from 2022 to 2035. Methods Using the Global Burden of Disease Study (GBD) database of 2021, numbers ofincident cases, prevalent cases, deaths, and disability-adjusted life years (DALYs) as well as crude and age-standardized rates of CWP in China were retrieved. Linear regression model was used to calculate the estimated annual percentage change (EAPC) of the age-standardized rates. Joinpoint regression model was used to analyze the temporal trend of disease burden and the disease burden of different sexes and age groups, and Bayesian age-period-cohort (BAPC) model was used to forecast the trend of CWP disease burden. Results In 1990, the incident, prevalent, and deaths cases of CWP in China were
10.Driving effect of P16 methylation on telomerase reverse transcriptase-mediated immortalization and transformation of normal human fibroblasts.
Xuehong ZHANG ; Paiyun LI ; Ying GAN ; Shengyan XIANG ; Liankun GU ; Jing ZHOU ; Xiaorui ZHOU ; Peihuang WU ; Baozhen ZHANG ; Dajun DENG
Chinese Medical Journal 2025;138(3):332-342
BACKGROUND:
P16 inactivation is frequently accompanied by telomerase reverse transcriptase ( TERT ) amplification in human cancer genomes. P16 inactivation by DNA methylation often occurs automatically during immortalization of normal cells by TERT . However, direct evidence remains to be obtained to support the causal effect of epigenetic changes, such as P16 methylation, on cancer development. This study aimed to provide experimental evidence that P16 methylation directly drives cancer development.
METHODS:
A zinc finger protein-based P16 -specific DNA methyltransferase (P16-Dnmt) vector containing a "Tet-On" switch was used to induce extensive methylation of P16 CpG islands in normal human fibroblast CCD-18Co cells. Battery assays were used to evaluate cell immortalization and transformation throughout their lifespan. Cell subcloning and DNA barcoding were used to track the diversity of cell evolution.
RESULTS:
Leaking P16-Dnmt expression (without doxycycline-induction) could specifically inactivate P16 expression by DNA methylation. P16 methylation only promoted proliferation and prolonged lifespan but did not induce immortalization of CCD-18Co cells. Notably, cell immortalization, loss of contact inhibition, and anchorage-independent growth were always prevalent in P16-Dnmt&TERT cells, indicating cell transformation. In contrast, almost all TERT cells died in the replicative crisis. Only a few TERT cells recovered from the crisis, in which spontaneous P16 inactivation by DNA methylation occurred. Furthermore, the subclone formation capacity of P16-Dnmt&TERT cells was two-fold that of TERT cells. DNA barcoding analysis showed that the diversity of the P16-Dnmt&TERT cell population was much greater than that of the TERT cell population.
CONCLUSION
P16 methylation drives TERT -mediated immortalization and transformation of normal human cells that may contribute to cancer development.
Humans
;
Telomerase/genetics*
;
DNA Methylation/physiology*
;
Fibroblasts/cytology*
;
Cyclin-Dependent Kinase Inhibitor p16/metabolism*
;
Cell Line
;
Cell Transformation, Neoplastic/genetics*


Result Analysis
Print
Save
E-mail