1.A Cross-sectional Study of Blood Glucose and Biochemical Indicators in Pediatric Patients with Hepatic Glycogen Storage Disease
Ni MA ; Haotian WU ; Ying WANG ; Jing YANG ; Danxia LIANG ; Min YANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):132-137
ObjectivePatients with hepatic glycogen storage disease(GSD)have recurrent episodes of hypoglycemia. This study aimed to investigate and analyze blood glucose and biochemical indicators in pediatric patients with hepatic GSD, thus provide data support for hypoglycemia prevention and its clinical management. MethodsA cross-sectional field study was conducted among patients with hepatic GSD treated in the Department of Pediatrics of Guangdong Provincial People's Hospital on July 14, 2024. We collected the peripheral blood samples of the patients and their healthy family controls on site, then analyzed and compared their blood glucose and biochemical indicators. ResultsOf the 44 patients with hepatic GSD, there were 34 males and 10 females, including GSD Ib(n =14), GSD Ia(n=15), GSD Ⅲ(n=2), GSD Ⅵ(n=7)and GSD Ⅸ(n=6). The average age was 7.60(5.08-11.98)years. All patients were on uncooked cornstarch(UCCS)therapy. Of the patients, 77.3%(34/44)had hepatomegaly, 61.4%(27/44)had recurrent hypoglycemia, 61.4%(27/44)had blood glucose ≤ 3.9 mmol/L, 18.2%(8/44)had blood glucose ≤ 2.8 mmol/L, and none of the 8 cases was GSD Ib. The lowest blood glucose level was 1.19 mmol/L and no episodes of hypoglycemia occurred. Of the family control subjects, 65.9%(29/44)had blood glucose ≤ 3.9 mmol/L. There was no significant difference in hypoglycemia prevalence between hepatic GSD group and control group(P=0.658). The hepatic GSD patients had hyperlactacemia, hyperuricemia and hypercholesterolemia prevalence rates of 65.9%, 45.5% and 9.1%, respectively, as compared with 18.2%, 43.2% and 15.9%, respectively, for the family control subjects. No significant difference was found in the prevalence rates of hyperuricemia and hypercholesterolemia between the two groups(P=0.830 and P=0.334, respectively). ConclusionsAsymptomatic hypoglycemia is common in patients with hepatic GSD, especially in non-GSD-Ib patients. It is necessary to optimize the diet management of UCCS, conduct dynamic blood glucose monitoring and follow a light diet, so as to decrease hyperuricemia and hypercholesterolemia, avoid and reduce the serious adverse reactions and complications caused by severe hypoglycemia.
2.Determination of biological activity of teduglutide by a homogeneous time-resolved fluorescence method
Xiao-ming ZHANG ; Ran MA ; Li-jing LÜ ; Lü-yin WANG ; Ping LÜ ; Cheng-gang LIANG ; Jing LI
Acta Pharmaceutica Sinica 2025;60(1):211-217
In this study, we constructed a GLP-2R-HEK293 cell line and established a method for the determination of the
3.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
4.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
5.Ancient and Modern Literature Analysis and Key Information Research of Classic Formula Qingfeitang
Lyuyuan LIANG ; Jinyan ZHANG ; Jialei CAO ; Jing TANG ; Mengmeng GENG ; Yiqing ZHAO ; Hejia WAN ; Yiping WANG ; Bingqi WEI ; Bingxiang MA ; Wenli SHI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):179-189
Qingfeitang, specialized in resolving phlegm to stop cough and producing fluid to moisten dryness, is a classic prescription inherited and developed by physicians of successive generations and has been included in the Catalogue of Ancient Classic Prescriptions (First Batch) published by the National Administration of Traditional Chinese Medicine (TCM) in 2018. Relevant ancient books data and modern literature were collected by bibliometrics to analyze the historic origin, formula composition, herb origin, preparation methods, processing methods, clinical effect, and indications of Qingfeitang. The key information of Qingfeitang was summarized to provide reference for the clinical application of the decoction. In this study, a total of 43 pieces of effective data on relevant ancient literature, including 35 ancient TCM books, were collected based on a systematic collation of relevant historic and modern literature. Results showed that "Qingfeitang" was originated from the "Renshen Qingfeitang" recorded in the Taiping Holy Prescriptions for Universal Relief from the Qing dynasty. The name of "Qinfeitang" was first recorded in the Yeshi Luyanfang written by YE Dalian in the Song dynasty. We suggested the modern dosage and usage of Qingfeitang as follows: "Scutellariae Radix of 5.60 g, Platycodon grandiflora, Poria, Tangerine, Fritillaria, and Cortex Mori of 3.73 g respectively, Angelicae Sinensis Radix, Asparagi Radix, Gardeniae Fructus, Armeniacae Semen Amarum, and Ophiopogonis Radix of 2.61 g respectively, Schisandra of 1 g, and Glycyrrhizae Radix et Rhizoma of 1.12 g, and they were taken 3 times daily. The above formula is recommended to be decocted with 400 mL of water, with 3.37 g ginger and 6 g jujubae fructus, to 320 mL, and taken after a meal, three times per day". Qingfeitang has the effect of resolving phlegm to stop cough and producing fluid to moisten dryness, specialized in treating cough, asthma, rash, and other symptoms in ancient times. Modern applications are mainly focused on the respiratory system, used for treating diseases such as bronchopneumonia and cough. The above research results provide a reference basis for the later development and research of Qingfeitang.
6.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
7.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
8.Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions.
Lina YANG ; Liang MA ; Ping FU ; Jing NIE
Frontiers of Medicine 2025;19(2):250-264
Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.
Humans
;
Cellular Senescence/physiology*
;
Fibrosis
;
Renal Insufficiency, Chronic/pathology*
;
Kidney/pathology*
;
Animals
9.Scaffold and SAR studies on c-MET inhibitors using machine learning approaches.
Jing ZHANG ; Mingming ZHANG ; Weiran HUANG ; Changjie LIANG ; Wei XU ; Jinghua ZHANG ; Jun TU ; Innocent Okohi AGIDA ; Jinke CHENG ; Dong-Qing WEI ; Buyong MA ; Yanjing WANG ; Hongsheng TAN
Journal of Pharmaceutical Analysis 2025;15(6):101303-101303
Numerous c-mesenchymal-epithelial transition (c-MET) inhibitors have been reported as potential anticancer agents. However, most fail to enter clinical trials owing to poor efficacy or drug resistance. To date, the scaffold-based chemical space of small-molecule c-MET inhibitors has not been analyzed. In this study, we constructed the largest c-MET dataset, which included 2,278 molecules with different structures, by inhibiting the half maximal inhibitory concentration (IC50) of kinase activity. No significant differences in drug-like properties were observed between active molecules (1,228) and inactive molecules (1,050), including chemical space coverage, physicochemical properties, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. The higher chemical diversity of the active molecules was downscaled using t-distributed stochastic neighbor embedding (t-SNE) high-dimensional data. Further clustering and chemical space networks (CSNs) analyses revealed commonly used scaffolds for c-MET inhibitors, such as M5, M7, and M8. Activity cliffs and structural alerts were used to reveal "dead ends" and "safe bets" for c-MET, as well as dominant structural fragments consisting of pyridazinones, triazoles, and pyrazines. Finally, the decision tree model precisely indicated the key structural features required to constitute active c-MET inhibitor molecules, including at least three aromatic heterocycles, five aromatic nitrogen atoms, and eight nitrogen-oxygen atoms. Overall, our analyses revealed potential structure-activity relationship (SAR) patterns for c-MET inhibitors, which can inform the screening of new compounds and guide future optimization efforts.
10.Clinical management of refractory prolactinomas:stone to sharpen yan,blunt for profit
Rui-Feng WANG ; Xiao-Zhen YE ; Jian-Rui LI ; Jing LI ; Jia-Liang LI ; Zi-Xiang CONG ; Yan LU ; Nan WU ; Yi-Feng GE ; Chi-Yuan MA ; Jia-Qing SHAO
Medical Journal of Chinese People's Liberation Army 2024;49(11):1237-1243
Refractory prolactinoma is the most common pituitary neuroendocrine tumor.Dopamine receptor agonists(DA)are the primary choice for drug treatment.Most patients with prolactinomas respond well to DA.However,a minority of prolactinomas patients still show resistance to DA.Although drug-resistant and refractory prolactinomas are rare in clinical practice,their treatment is extremely challenging.Even a combination of drug therapy,multiple surgeries,and radiotherapy may not yield satisfactory outcomes.Therefore,standardizing the diagnosis and treatment process and pathway for refractory prolactionmas and exploring more effective multidisciplinary collaborative treatment strategies are urgent problems to be solved.In the clinical management of refractory prolactinomas,it is often necessary to consider the patient's condition comprehensively,replace other types of DA,or consider surgery,radiotherapy,and immunotherapy,which requires multidisciplinary diagnosis and treatment.This review synthesizes the latest literature at home and abroad to systematically discuss the latest advances in drug therapy,surgery,and radiotherapy treatments for refractory prolactionmas,aiming to provide new ideas for basic research,clinical diagnosis and treatment.

Result Analysis
Print
Save
E-mail