1.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
2.Traditional Chinese Medicine Treats Sepsis by Regulating PI3K/Akt Pathway: A Review
Zhu LIU ; Jiawei WANG ; Jing YAN ; Jinchan PENG ; Mingyao XU ; Liqun LI ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):314-322
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms such as bacteria. In addition to the manifestations of systemic inflammatory response syndrome and primary infection lesions, critical cases often have manifestations of organ hypoperfusion. The morbidity and mortality of sepsis have remained high in recent years, which seriously affect the quality of life of the patients. The pathogenesis of sepsis is complicated, in which uncontrollable inflammation is a key mechanism. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway plays a key role in mediating inflammation in sepsis. The available therapies of sepsis mainly include resuscitation, anti-infection, vasoactive drugs, intensive insulin therapy, and organ support, which show limited effects of reducing the mortality. Therefore, finding new therapeutic drugs is a key problem to be solved in the clinical treatment of sepsis. In recent years, studies have shown that traditional Chinese medicine (TCM) can regulate the PI3K/Akt pathway via multiple pathways, multiple effects, and multiple targets to inhibit inflammation and curb the occurrence and development of sepsis, which has gradually become a hot spot in the prevention and treatment of sepsis. Moreover, studies have suggested that TCM has unique advantages in the treatment of sepsis. TCM can regulate the PI3K/Akt signaling pathway to inhibit inflammation, reduce oxidative stress, and control apoptosis in the prevention and treatment of sepsis. Despite the research progress, a systematic review remains to be performed regarding the TCM treatment of sepsis by regulating the PI3K/Akt signaling pathway. After reviewing relevant papers published in recent years, this study systematically summarizes the relationship between PI3K/Akt pathway and sepsis and the role of TCM in the treatment of sepsis, aiming to provide new ideas for the potential treatment of sepsis and the development of new drugs.
3.Protective Effect and Mechanism of Anmeidan against Neuronal Damage in Rat Model of Sleep Deprivation Based on Hippocampal Neuroinflammation
Guangjing XIE ; Zixuan XU ; Junlu ZHANG ; Jian ZHANG ; Jing XIA ; Bo XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):65-71
ObjectiveTo investigate the effects of Anmeidan (AMD) on neuroinflammation in the hippocampus of sleep-deprived rats. MethodsSD rats were randomly divided into four groups (n = 10 per group): control group, model group, AMD group, and melatonin group. A sleep deprivation model was established using the modified multiple platform water environment method. The AMD group received AMD at a dose of 18.18 g·kg-1·d-1, the melatonin group received melatonin at 100 mg·kg-1·d-1, and the control and model groups were given an equal volume of pure water. All treatments were administered by gavage for four weeks. Spontaneous activity was assessed using an animal behavior video system. Serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay (ELISA). Hippocampal pyramidal neuron morphology was examined using hematoxylin-eosin (HE) staining, and ultrastructural changes of hippocampal neurons were observed via transmission electron microscopy. Immunofluorescence was used to detect the expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus. Western blot analysis was performed to measure the expression of nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), NOD-like receptor protein 3 (NLRP3), and Caspase-1 proteins. ResultsCompared with the control group, the model group showed a significant increase in activity duration and frequency (P<0.01), increased hippocampal pyramidal cell structural damage and decreased cell count, aggravated hippocampal ultrastructural damage, mitochondrial cristae disruption, and exacerbated vacuolization. The expression of p-NF-κB p65, NLRP3, and Caspase-1 proteins was upregulated, serum IL-1β, IL-6, and TNF-α levels were significantly elevated (P<0.01), and the fluorescence intensity of BDNF and NGF proteins was significantly reduced (P<0.01). Compared with the model group, the AMD group showed a significant reduction in activity duration and frequency (P<0.01), increased hippocampal pyramidal cell count with reduced structural damage, alleviated hippocampal ultrastructural damage, significantly downregulated p-NF-κB p65, NLRP3, and Caspase-1 protein expression (P<0.01), decreased serum IL-1β, IL-6, and TNF-α levels (P<0.01), and significantly increased the fluorescence intensity of BDNF and NGF proteins (P<0.01). ConclusionAnmeidan alleviates hippocampal neuronal damage in sleep-deprived rats, potentially by downregulating the NLRP3 signaling pathway, reducing inflammatory cytokine release, and increasing neurotrophic factor levels.
4.The Application Status and Trends of Data-Intelligence Technology in the Diagnosis of Lysosomal Storage Diseases
Xinyu DU ; Shengfeng WANG ; Jing XIE ; Jian GUO ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(1):112-121
To summarize the applications of data-intelligence technology in diagnosing lysosomal storage disease(LSD), analyze their opportunities and challenges in clinical practice as well as their development trends, and provide insights and recommendations for advancing digitally driven auxiliary diagnostic technologies. A comprehensive literature search was conducted across databases including PubMed, Web of Science, Embase, CNKI, Wanfang Database, and VIP. The studies focusing on the application of digital-intelligence technologies in LSD diagnosis were included. A qualitative analysis was performed, categorizing and summarizing research based on the types of digital-intelligence technologies employed, and exploring future development trends. The analysis revealed that digital-intelligence technologies, particularly in areas such as big data storage and management, data mining and analytics, machine learning, natural language processing, and computer vision, held significant potential for early screening and diagnosis of LSD. These technologies facilitated the identification of potential patients, discovery of new biomarkers, quantitative analysis of symptoms, and elucidation of gene-disease relationships, ultimately enhancing diagnostic efficiency and accuracy. Digital-intelli-gence technologies present promising prospects for advancing LSD diagnostic research and improving diagnostic precision. Future efforts should focus on developing a comprehensive, multidimensional diagnosis system and diagnostic technologies under the guidance of the DI-HEALTH theoretical framework, in the hope of paving the way for further development of digitally assisted diagnostic solutions.
5.Current Research Status of Digital Technology in the Rehabilitation of Rare Neurological and Muscular Diseases
Yixuan GUO ; Yi GAO ; Yiyang YAO ; Zhuoyue QIN ; Yaofang ZHANG ; Jiaqi JING ; Jing XIE ; Jian GUO ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(1):122-131
To review the randomized controlled trials (RCTs) at home and abroad on digital intelligence (DI)-driven rehabilitation in patients of neuromuscular disease, compare the effects of DI-driven rehabilitation with traditional rehabilitation, summarize the special needs and challenges faced by patients in rehabilitation of rare neuromuscular diseases, and provide evidence for the development and quality improvement of rehabilitation for rare neuromuscular diseases. We searched PubMed, Web of Science, Embase, CNKI, VIP, and Wanfang databases for literature on neuromuscular diseases, rare diseases, digital and intelligent technologies, and rehabilitation published from the inception of the databases to June 2024. Basic and research-related information from the retrieved literature was extracted and analyzed. A total of 43 RCTs in English from 14 countries were included. The most studied diseases were Parkinson′s disease and multiple sclerosis. The application of DI-driven technologies in rehabilitation of rare neuromuscular diseases was still limited. The commonly used technologies were virtual reality (VR) games, intelligent treadmill assistance, gait training robots, hybrid assistive limb (HAL), wearable sensors and tele-rehabilitation (TR) systems. These technologies were applied in patients′ homes or rehabilitation service centers. The VR games significantly improved both static/dynamic balance functions and cognitive functions. The intelligent treadmill assistance significantly enhanced gait speed and stride length. The gait training robots significantly improved balance, gait speed and stride length of patients. The wearable exoskeletons significantly enhanced walking ability. DI-driven rehabilitation measures have great value and potential in the field of neuromuscular disease rehabilitation. Their advantages and characteristics can meet the diverse needs of rare disease patients. In the future, a hierarchical and collaborative rehabilitation service system should be established to meet the urgent needs of the rehabilitation of rare neuromuscular diseases. Combining the advantages of digitization and intelligence will provide standardized, scientific, convenient and affordable rehabilitation services to patients.
6.The Application of Digital Intelligence Technology in the Management of Non-Hospitalized Patients with Rare Diseases
Yiyang YAO ; Yi GAO ; Yixuan GUO ; Zhuoyue QIN ; Yaofang ZHANG ; Jiaqi JING ; Jing XIE ; Jian GUO ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(1):46-53
To provide references to and give suggestions to the development and optimiza-tion of Digital Intelligence (DI) technology in management of non-hospitalized patients by systematical review the application of digital technology in non-hospital settings. We designed the search strategy and used the words " rare diseases"" patient management"" non-hospitalized management"" community management"" digital intelligence"" big data"" telemedicine" as MESH terms or free words. We searched the database of PubMed, Science-Direct, Web of Science, CNKI, Wanfang and VIP from the beginning of the database to July 2024 and used computer retrieval to get the literatures on the application of DI technology in the management of patients with rare diseases in non-hospital setting. We extracted the information of the first author, country or region, publication time, research participants, DI technology application, and application effect for summary analysis. A total of 13 articles were included in this study, which were from 8 countries or regions. We found that DI technologies used were in the following forms: Internet information platform, wearable devices, telemedicine management platform and electronic database. The DI technology was used by the patients with rare diseases, patient caregivers and professional medical staffs. The application of all the forms above in different populations had good effect. The Internet information platform helped patients and their caregivers learn more about the disease and improved their self-management ability. The wearable device helped monitor the health status of patients in real time and predict the risk of emergent events. The telemedicine management platform facilitated to optimize the allocation of medical resources and strengthen doctor-patient communication. The electronic health database promoted the interconnection of data inside and outside the hospital and improved the accuracy of decision-making through data sharing. The application of DI technology in the management of patients with rare diseases in non-hospitalized settings has shown positive results. In the future, it is necessary to correct the shortcomings and to deal with the challenges in terms of accuracy, readiness, applicability, and privacy protection. Besides, the DI can be integrated into the tri-level management system of patients known as the "patient-community-hospital". It is advisable to take the advantages of digital intelligence technology to improve the efficiency and quality of management of patients in non-hospitalized settings.
7.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
8.Genetic Correlation and Mendelian Randomization Analysis Revealed an Unidirectional Causal Relationship Between Left Caudal Middle Frontal Surface Area and Cigarette Consumption
Hongcheng XIE ; Anlin WANG ; Minglan YU ; Tingting WANG ; Xuemei LIANG ; Rongfang HE ; Chaohua HUANG ; Wei LEI ; Jing CHEN ; Youguo TAN ; Kezhi LIU ; Bo XIANG
Psychiatry Investigation 2025;22(3):279-286
Objective:
Previous studies have discovered a correlation between cigarette smoking and cortical thickness and surface area, but the causal relationship remains unclear. The objective of this investigation is to scrutinize the causal association between them.
Methods:
To derive summary statistics from a genome-wide association study (GWAS) on cortical thickness, surface area, and four smoking behaviors: 1) age of initiation of regular smoking (AgeSmk); 2) smoking initiation (SmkInit); 3) smoking cessation (SmkCes); 4) cigarettes per day (CigDay). Linkage disequilibrium score regression (LDSC) was employed to examine genetic association analysis. Furthermore, for traits with significant genetic associations, Mendelian randomization (MR) analyses were conducted.
Results:
The LDSC analysis revealed nominal genetic correlations between AgeSmk and right precentral surface area, left caudal anterior cingulate surface area, left cuneus surface area, left inferior parietal surface area, and right caudal anterior cingulate thickness, as well as between CigDay and left caudal middle frontal surface area, between SmkCes and left entorhinal thickness, and between SmkInit and left rostral anterior cingulate surface area, right rostral anterior cingulate thickness, and right superior frontal thickness (rg=-0.36–0.29, p<0.05). MR analysis showed a unidirectional causal association between left caudal middle frontal surface area and CigDay (βIVW=0.056, pBonferroni=2×10-4).
Conclusion
Left caudal middle frontal surface area has the potential to serve as a significant predictor of smoking behavior.
9.Synergistic Activation of LEPR and ADRB2 Induced by Leptin Enhances Reactive Oxygen Specie Generation in Triple-Negative Breast Cancer Cells
Chang LIU ; Jing YU ; Yongjun DU ; Yu XIE ; Xiaofei SONG ; Chang LIU ; Yan YAN ; Yue WANG ; Junfang QIN
Cancer Research and Treatment 2025;57(2):457-477
Purpose:
Leptin interacts not only with leptin receptor (LEPR) but also engages with other receptors. While the pro-oncogenic effects of the adrenergic receptor β2 (ADRB2) are well-established, the role of leptin in activating ADRB2 in triple-negative breast cancer (TNBC) remains unclear.
Materials and Methods:
The pro-carcinogenic effects of LEPR were investigated using murine TNBC cell lines, 4T1 and EMT6, and a tumor-bearing mouse model. Expression levels of LEPR, NADPH oxidase 4 (NOX4), and ADRB2 in TNBC cells and tumor tissues were analyzed via western blot and quantitative real-time polymerase chain reaction. Changes in reactive oxygen species (ROS) levels were assessed using flow cytometry and MitoSox staining, while immunofluorescence double-staining confirmed the co-localization of LEPR and ADRB2.
Results:
LEPR activation promoted NOX4-derived ROS and mitochondrial ROS production, facilitating TNBC cell proliferation and migration, effects which were mitigated by the LEPR inhibitor Allo-aca. Co-expression of LEPR and ADRB2 was observed on cell membranes, and bioinformatics data revealed a positive correlation between the two receptors. Leptin activated both LEPR and ADRB2, enhancing intracellular ROS generation and promoting tumor progression, which was effectively countered by a specific ADRB2 inhibitor ICI118551. In vivo, leptin injection accelerated tumor growth and lung metastases without affecting appetite, while treatments with Allo-aca or ICI118551 mitigated these effects.
Conclusion
This study demonstrates that leptin stimulates the growth and metastasis of TNBC through the activation of both LEPR and ADRB2, resulting in increased ROS production. These findings highlight LEPR and ADRB2 as potential biomarkers and therapeutic targets in TNBC.
10.Cost-effectiveness and return on investment of hepatitis C virus elimination in China: A modelling study
Meiyu WU ; Jing MA ; Xuehong WANG ; Sini LI ; Chongqing TAN ; Ouyang XIE ; Andong LI ; Aaron G LIM ; Xiaomin WAN
Clinical and Molecular Hepatology 2025;31(2):394-408
Background/Aims:
The World Health Organization set the goal of eliminating hepatitis C virus (HCV) by 2030, with 80% and 65% reductions in HCV incidence and mortality rates, respectively. We aimed to evaluate the health benefits, cost-effectiveness and return on investment (ROI) of HCV elimination.
Methods:
Using an HCV transmission compartmental model, we evaluated the benefits and costs of different strategies combining screening and treatment for Chinese populations. We identified strategies to achieve HCV elimination and calculated the incremental cost-effectiveness ratios (ICERs) per disability-adjusted life year (DALY) averted for 2022–2030 to identify the optimal elimination strategy. Furthermore, we estimated the ROI by 2050 by comparing the required investment with the economic productivity gains from reduced HCV incidence and deaths.
Results:
The strategy that results in the most significant health benefits involves conducting annual primary screening at a rate of 14%, re-screening people who inject drugs annually and the general population every five years, and treating 95% of those diagnosed (P14-R4-T95), preventing approximately 5.75 and 0.44 million HCV infections and deaths, respectively, during 2022–2030. At a willingness-to-pay threshold of $12,615, the P14-R4-T95 strategy is the most cost-effective, with an ICER of $5,449/DALY. By 2050, this strategy would have a net benefit of $120,997 million (ROI=0.868).
Conclusions
Achieving HCV elimination in China by 2030 will require significant investment in large-scale universal screening and treatment, but it will yield substantial health and economic benefits and is cost-effective.

Result Analysis
Print
Save
E-mail