1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Effect of oxymatrine on expression of stem markers and osteogenic differentiation of periodontal ligament stem cells
Jing LUO ; Min YONG ; Qi CHEN ; Changyi YANG ; Tian ZHAO ; Jing MA ; Donglan MEI ; Jinpeng HU ; Zhaojun YANG ; Yuran WANG ; Bo LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):3992-3999
BACKGROUND:Human periodontal ligament stem cells are potential functional cells for periodontal tissue engineering.However,long-term in vitro culture may lead to reduced stemness and replicative senescence of periodontal ligament stem cells,which may impair the therapeutic effect of human periodontal ligament stem cells. OBJECTIVE:To investigate the effect of oxymatrine on the stemness maintenance and osteogenic differentiation of periodontal ligament stem cells in vitro,and to explore the potential mechanism. METHODS:Periodontal ligament stem cells were isolated from human periodontal ligament tissues by tissue explant enzyme digestion and cultured.The surface markers of mesenchymal cells were identified by flow cytometry.Periodontal ligament stem cells were incubated with 0,2.5,5,and 10 μg/mL oxymatrine.The effect of oxymatrine on the proliferation activity of periodontal ligament stem cells was detected by CCK8 assay.The appropriate drug concentration for subsequent experiments was screened.Western blot assay was used to detect the expression of stem cell non-specific proteins SOX2 and OCT4 in periodontal ligament stem cells.qRT-PCR and western blot assay were used to detect the expression levels of related osteogenic genes and proteins in periodontal ligament stem cells. RESULTS AND CONCLUSION:(1)The results of CCK8 assay showed that 2.5 μg/mL oxymatrine significantly enhanced the proliferative activity of periodontal stem cells,and the subsequent experiment selected 2.5 μg/mL oxymatrine to intervene.(2)Compared with the blank control group,the protein expression level of SOX2,a stem marker of periodontal ligament stem cells in the oxymatrine group did not change significantly(P>0.05),and the expression of OCT4 was significantly up-regulated(P<0.05).(3)Compared with the osteogenic induction group,the osteogenic genes ALP,RUNX2 mRNA expression and their osteogenic associated protein ALP protein expression of periodontal ligament stem cells were significantly down-regulated in the oxymatrine+osteogenic induction group(P<0.05).(4)The oxymatrine up-regulated the expression of stemness markers of periodontal ligament stem cells and inhibited the bone differentiation of periodontal ligament stem cells,and the results of high-throughput sequencing showed that it may be associated with WNT2,WNT16,COMP,and BMP6.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Key questions of translational research on international standards of acupuncture-moxibustion techniques: an example from the WFAS Technical Benchmark of Acupuncture and Moxibustion: General Rules for Drafting.
Shuo CUI ; Jingjing WANG ; Zhongjie CHEN ; Jin HUO ; Jing HU ; Ziwei SONG ; Yaping LIU ; Wenqian MA ; Qi GAO ; Zhongchao WU
Chinese Acupuncture & Moxibustion 2025;45(8):1159-1165
OBJECTIVE:
To provide the experience and demonstration for the transformation of acupuncture-moxibustion techniques standards from Chinese national standards to international standards.
METHODS:
Questionnaire research, literature research, semi-structured interviews and expert consultation were used.
RESULTS:
The safety of acupuncture-moxibustion techniques was evaluated through literature research, and based on the results of the questionnaire survey, expert interviews, and expert consultation, 11 main bodies and structure of the former Chinese national standard, Technical Benchmark of Acupuncture and Moxibustion: General Rules for Drafting, were adjusted and optimized in accordance with the requirements of international standard (including the language, normative references, purpose, scope, applicable environment, target population, work team, terms and definitions, general principles and basic requirements, structural elements and text structure, and compilation process); and the first international standard, World Federation of Acupuncture-Moxibustion Societis (WFAS) Technical Benchmark of Acupuncture and Moxibustion: General Rules for Drafting was formulated to specify the general rules for drafting.
CONCLUSION
The 3 key questions, "international compatibility", "technical operability" and "safety" should be solved technically on the basis of explicit international requirements. It is the core technical issue during transforming the national standards of technical benchmark of acupuncture and moxibustion into international standards.
Moxibustion/methods*
;
Acupuncture Therapy/methods*
;
Humans
;
Translational Research, Biomedical/standards*
;
Surveys and Questionnaires
;
China
;
Benchmarking/standards*
6.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
7.Application scenarios of rare and endangered Chinese medicinal materials and their substitutes.
Wen-Ting HU ; Xiao-Bo ZHANG ; Yi-Jing ZHANG ; Zhi-Yong LI ; Lan-Ping GUO ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(10):2640-2647
Traditional Chinese medicine(TCM) resources are an important foundation for the theory and practice of TCM. Rare and endangered TCM, as a significant component of these resources, plays an essential role. Conducting research on substitutes for rare and endangered TCM resources is of great significance for alleviating resource shortages, promoting the sustainable utilization of TCM, and advancing TCM modernization. This paper reviews the conservation achievements of rare and endangered Chinese medicinal materials in China and organizes the substitution methods for these materials. Currently, the main substitution approaches include introduction and domestication, tissue culture, varietal replacement, and artificial synthesis. Furthermore, this paper proposes the following approaches for researching the application scenarios of rare and endangered medicinal materials, i.e., tracing the historical context of their use to clarify foundational principles; verifying disease classifications to strengthen the clinical application scenarios of these materials; analyzing the evolution patterns of prescription formulations to strengthen the mining of the compatibility application scenarios of rare and endangered medicinal materials; scientifically evaluating to strengthen the application scenario research and development of endangered Chinese patent medicine industry. These efforts aim to promote the scientific substitution and sustainable utilization of rare and endangered medicinal materials and their substitutes.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Medicine, Chinese Traditional
;
China
;
Plants, Medicinal/growth & development*
;
Endangered Species
;
Conservation of Natural Resources
;
Animals
8.Research progress in pharmacological activities and pharmacokinetics of geniposidic acid.
Zi-Wei LI ; Sheng-Lan QI ; Qing-Guang ZHANG ; Ling CHEN ; Jing HU ; Guang-Bo GE ; Feng HUANG
China Journal of Chinese Materia Medica 2025;50(13):3679-3691
Geniposidic acid(GA), a natural iridoid, exists in the roots, stems, leaves, flowers, bark, fruits, and seeds of medicinal plants of Rubiaceae, Eucommiaceae, and Plantaginaceae. Modern pharmacological studies have revealed that GA has multiple pharmacological activities, including organ-protective, anti-inflammatory, antioxidative, anti-osteoporosis, anti-neurodegenerative, and anti-cardiovascular effects. GA can enhance cell/organism defenses by upregulating key anti-inflammatory and antioxidant cytokines, while downregulating key node proteins in pro-inflammatory signaling pathways such as AhR and TLR4/MyD88, thereby exerting pharmacological effects such as organ protection. Pharmacokinetic investigations have suggested that after oral administration, GA can be distributed in multiple organs(kidney, liver, heart, spleen, lung, etc.). In addition, the pharmacokinetic behavior of GA could be significantly altered under disease conditions, as demonstrated by a marked increase in systematic exposure. This article comprehensively summarizes the reported pharmacological activities and mechanisms and systematically analyzes the pharmacokinetic characteristics and key parameters of GA, with the aim of providing a theoretical basis and scientific reference for the precise clinical application of GA-related Chinese patent medicines, as well as for the investigation and development of innovative drugs based on GA.
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Iridoid Glucosides/chemistry*
;
Plants, Medicinal/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
9.Clinical Analysis of Dyskeratosis Congenita in Children.
Wen-Qi LU ; Shao-Yan HU ; Jing GAO ; Wei GAO ; Jun-Jie FAN
Journal of Experimental Hematology 2025;33(3):906-912
OBJECTIVE:
To summarize the clinical characteristics, diagnosis, treatment and prognosis of dyskeratosis congenita (DC) in children, and to provide clinical experience for the diagnosis and treatment of DC.
METHODS:
The clinical data of children with dyskeratosis congenital admitted to Children's Hospital of Soochow University from May 2016 to May 2024 were retrospectively analyzed. Whole exome sequencing (WES) was performed, the patients were followed up and the related literature was reviewed.
RESULTS:
A total of 4 patients were enrolled. There were 1 male and 3 females. Two patients had spontaneous TINF2 mutation, one had TERT mutation, and one had DKC1 mutation. All of them had bone marrow hypoplasia. Two patients underwent allogeneic hematopoietic stem cell transplantation, and both had good engraftment. Anti-rejection drugs were stopped, and they survived more than 5 years of follow-up. One patient was followed up in outpatient department, and another patient was scheduled to undergo hematopoietic stem cell transplantation.
CONCLUSION
The onset of dyskeratosis congenita in children is insidious, so genetic diagnosis is particularly important. c.853_861delGTCATGCTG (p.285-287del) was a new mutation site of TINF2, which expanded the gene mutation spectrum of DC. Hematopoietic stem cell transplantation is an effective treatment for bone marrow failure, and the treatment of other organ complications depends on further genetic exploration.
Humans
;
Dyskeratosis Congenita/therapy*
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Mutation
;
Female
;
Retrospective Studies
;
Telomerase/genetics*
;
Telomere-Binding Proteins/genetics*
;
Child
;
Cell Cycle Proteins/genetics*
;
Nuclear Proteins/genetics*
;
Child, Preschool
;
Prognosis
;
Exome Sequencing
10.Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo.
Bo JIANG ; Zhao-Yang MENG ; Yu-Jie HU ; Jun-Jun CHEN ; Ling ZONG ; Ling-Yan XU ; Xiang-Qi ZHANG ; Jing-Xian ZHANG ; Yong-Long HAN
Journal of Integrative Medicine 2025;23(5):576-590
OBJECTIVE:
Huachansu injection (HCSI), a promising anti-cancer Chinese medicine injection, has been reported to have the potential for reducing the toxicity of chemotherapy and improving the quality of life for colorectal cancer (CRC) patients. The objective of this study is to explore the synergistic and detoxifying effects of HCSI when used in combination with irinotecan (CPT-11).
METHODS:
To investigate the effect of HCSI on anti-CRC efficacy and intestinal toxicity of CPT-11, we measured changes in the biological behavior of LoVo cells in vitro, and anti-tumor effects in LoVo cell xenograft nude mice models in vivo. Meanwhile, the effect of HCSI on intestinal toxicity and the uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) expression was investigated in the CPT-11-induced colitis mouse model. Subsequently, we measured the effect of HCSI and its 13 constituent bufadienolides on the expression of UGT1A1 and organic anion transporting polypeptides 1B3 (OATP1B3) in HepG2 cells.
RESULTS:
The combination index (CI) results showed that the combination of HCSI and CPT-11 exhibited a synergistic effect (CI < 1), which significantly suppressing the LoVo cell migration, enhancing G2/M and S phase arrest, and inhibiting tumor growth in vivo. Additionally, the damage to intestinal tissues was attenuated by HCSI in CPT-11-induced colitis model, while the increased expression of UGT1A1 in HepG2 cells and in mouse was observed.
CONCLUSION
The co-therapy with HCSI alleviated the intestinal toxicity induced by CPT-11 and exerted an enhanced anti-CRC effect. The detoxifying mechanism may be related to the increased expression of UGT1A1 and OATP1B3 by HCSI and its bufadienolides components. The findings of this study may serve as a theoretical insights and strategies to improve CRC patient outcomes. Please cite this article as: Jiang B, Meng ZY, Hu YJ, Chen JJ, Zong L, Xu LY, Zhang XQ, Zhang JX, Han YL. Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo. J Integr Med. 2025; 23(5):576-590.
Irinotecan/therapeutic use*
;
Animals
;
Glucuronosyltransferase/genetics*
;
Humans
;
Colorectal Neoplasms/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Nude
;
Mice
;
Up-Regulation/drug effects*
;
Male
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
;
Hep G2 Cells
;
Cell Line, Tumor
;
Intestines/drug effects*
;
Amphibian Venoms

Result Analysis
Print
Save
E-mail