1.Renshen Yangrongtang Alleviating Myelosuppression by Reducing Neutrophil Extracellular Traps Through Regulating ROS/MPO
Jing ZHANG ; Rongxing LIU ; Jinhao ZENG ; Qing NIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):39-46
ObjectiveTo investigate the potential mechanism of Renshen Yangrongtang in alleviating myelosuppression by regulating the expression of reactive oxygen species (ROS), myeloperoxidase (MPO), and neutrophil extracellular traps (NETs). MethodsK562 cells were divided into blank group, etoposide group (40 μmol·L-1), and etoposide+Renshen Yangrongtang freeze-dried powder groups with low-, medium-, and high-dose (2, 4, 8 g·L-1). Liquid chromatography-mass spectrometry (LC-MS) was used to determine the freeze-dried powder of Renshen Yangrongtang. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect ROS, MPO, and NETs expression in each group. Western blot analysis was performed to assess intracellular MPO and NE expressions. Twenty 8-week-old male mice were randomly divided into blank group, etoposide group (100 mg·kg-1), and etoposide + Renshen Yangrongtang groups with low-, medium-, and high-dose (0.1, 0.5, 2.0 g·kg-1). Except for the blank group that received PBS via gavage at room temperature, and the etoposide group that received an intraperitoneal injection for 3 days, the remaining groups received gavage of Renshen Yangrongtang for 14 consecutive days after 3 days of etoposide administration. The peripheral blood related indicators were detected through an automated hematology analyzer; Western blot analysis was performed to assess MPO and neutrophil elastase (NE) expression changes in the marrow cells of mice. Enzyme-linked immunosorbent assay (ELISA) was used to detect ROS, MPO, and NETs changes in the marrow cells of mice. MPO and NE on femur bones were stained through immunohistochemistry. Scanning electron microscopy was used to analyze the structural changes of NETs in the marrow cells of mice after drug administration. ResultsLC-MS results showed that the freeze-dried powder of Renshen Yangrongtang contained complete technical materials such as Chinese angelica, Astragalus mongholicus, and ginseng. In K562 cells, compared with the etoposide group, ELISA results indicated that the concentrations of MPO, ROS, and NETs in the etoposide + Renshen Yangrongtang medium and high-dose groups were decreased (P<0.05, P<0.01), and Western blot data showed that the etoposide high-dose group significantly reduced the expression of MPO and NE protein in K562 cells (P<0.05, P<0.01). In vivo, compared with the etoposide group, the number of RBC, WBC, and PLT in the etoposide+Renshen Yangrongtang high-dose group increased significantly (P<0.05). ELISA results suggested that in the etoposide+Renshen Yangrongtang low-, medium-, and high-dose groups, the concentration of mice ROS, MPO, and NETs significantly decreased (P<0.05, P<0.01). Western blot results revealed that compared with the etoposide group, the expressions of MPO and NE in the marrow cells of mice in the etoposide + Renshen Yangrongtang low-, medium- and high-dose groups were significantly decreased (P<0.05, P<0.01). Scanning electron microscopy observations revealed that Renshen Yangrongtang reduced the NETs structure generation in the marrow cells of mice after the influence of etoposide. ConclusionRenshen Yangrongtang can alleviate etoposide-induced myelosuppression by inhibiting ROS/MPO and reducing the formation of intracellular NETs.
2.Effects of isorhamnetin on the development of gastric cancer by up-regulating SLC25A25-AS1
Yang ZHANG ; Jing WANG ; Lisha NA ; Aoran ZENG ; Bowen PANG ; Yulin LIU
China Pharmacy 2025;36(8):932-938
OBJECTIVE To explore the effects of isorhamnetin on the development of gastric cancer through up-regulation of solute carrier family 25 member 25 antisense RNA 1(SLC25A25-AS1). METHODS Using BALB/c nude mice as the subjects, the xenograft tumor model was established by subcutaneously inoculating human gastric cancer MKN28 cells into the axillary region. The effects of low and high doses of isorhamnetin (20 and 40 mg/kg) on the tumor volume and mass in nude mice were investigated. MKN28 cells were selected and divided into control group, isorhamnetin group (70 μmol/L, similarly hereinafter), isorhamnetin+knocking down negative control group, isorhamnetin+knocking down SLC25A25-AS1 group, isorhamnetin+ overexpression negative control group and isorhamnetin+overexpressing SLC25A25-AS1 group. Effects of knocking down/ overexpressing SLC25A25-AS1 on viability, apoptosis, migration and invasion ability of isorhamnetin-treated cells were detected. After verifying the targeting relationships between microRNA-212-3p (miR-212-3p) and SLC25A25-AS1, as well as phosphatase and tensin homologue deleted on chromosome 10 (PTEN), the effects of knocking down/overexpressing SLC25A25-AS1 on the expression of miR-212-3p, PTEN mRNA, and PTEN protein in isorhamnetin-treated cells were investigated. RESULTS Compared with the model control group, tumor volume and mass of nude mice in the isorhamnetin low-dose and high-dose groups were reduced significantly, and the isorhamnetin high-dose group was significantly lower than the isorhamnetin low-dose group (P<0.05). miR-212-3p had targeting relationships with SLC25A25-AS1 and PTEN. Compared with the control group, the cell viability (intervened for 24, 48 h), migration number, invasion number and miR-212-3p expression of cells in the isorhamnetin group, isorhamnetin+knocking down negative control group and isorhamnetin+overexpressing negative control group were significantly reduced or decreased or down-regulated, while the apoptosis rate, mRNA and protein expressions of PTEN were significantly increased or up-regulated (P<0.05). Compared with isorhamnetin group and isorhamnetin+knocking down negative control group, the cell viability, migration number, invasion number and miR-212-3p expression of cells in the isorhamnetin+knocking down SLC25A25-AS1 group were significantly increased or up- regulated, while the apoptosis rate, mRNA and protein expressions of PTEN were significantly reduced or down-regulated (P< 0.05). Compared with isorhamnetin group and isorhamnetin+overexpressing negative control group, the cell viability, migration number, invasion number and miR-212-3p expression of cells in isorhamnetin+overexpressing SLC25A25-AS1 group were significantly reduced or decreased or down-regulated, while the apoptosis rate, PTEN mRNA and protein expressions were significantly increased or up-regulated (P<0.05). CONCLUSIONS Isorhamnetin may inhibit the development of gastric cancer by up-regulating the expression of SLC25A25-AS1, down-regulating miR-212-3p, and up-regulating the expression of PTEN, which is a downstream target of miR-212-3p.
3.A Single-Arm Phase II Clinical Trial of Fulvestrant Combined with Neoadjuvant Chemotherapy of ER+/HER2– Locally Advanced Breast Cancer: Integrated Analysis of 18F-FES PET-CT and Metabolites with Treatment Response
Qing SHAO ; Ningning ZHANG ; Xianjun PAN ; Wenqi ZHOU ; Yali WANG ; Xiaoliang CHEN ; Jing WU ; Xiaohua ZENG
Cancer Research and Treatment 2025;57(1):126-139
Purpose:
This Phase II trial was objected to evaluate the efficacy and safety of adding fulvestrant to neoadjuvant chemotherapy in patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– locally advanced breast cancer (LABC). Additionally, the study aimed to investigate the association of 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) positron emission tomography (PET)–computed tomography (CT) and metabolites with efficacy.
Materials and Methods:
Fulvestrant and EC-T regimen were given to ER+/HER2– LABC patients before surgery. At baseline, patients received 18F-FES PET-CT scan, and plasma samples were taken for liquid chromatography–mass spectrometry analysis. The primary endpoint was objective response rate (ORR). Secondary endpoints included total pathologic complete response (tpCR) and safety.
Results:
Among the 36 patients enrolled, the ORR was 86.1%, the tpCR rate was 8.3%. The incidence of grade ≥ 3 treatment-emergent adverse events was 22%. The decrease in ER value in sensitive patients was larger than that in non-sensitive patients, as was Ki-67 (p < 0.05). The maximum standardized uptake value, mean standardized uptake values, total lesion ER expression of 18F-FES PET-CT in sensitive patients were significantly higher than those in non-sensitive patients (p < 0.05). Moreover, these parameters were significantly correlated with Miller and Payne grade and the change in ER expression before and after treatment (p < 0.05). Thirteen differential expressed metabolites were identified, which were markedly enriched in 19 metabolic pathways.
Conclusion
This regimen demonstrated acceptable toxicity and encouraging antitumor efficacy. 18F-FES PET-CT might serve as a tool to predict the effectiveness of this therapy. Altered metabolites or metabolic pathways might be associated with treatment response.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.A Single-Arm Phase II Clinical Trial of Fulvestrant Combined with Neoadjuvant Chemotherapy of ER+/HER2– Locally Advanced Breast Cancer: Integrated Analysis of 18F-FES PET-CT and Metabolites with Treatment Response
Qing SHAO ; Ningning ZHANG ; Xianjun PAN ; Wenqi ZHOU ; Yali WANG ; Xiaoliang CHEN ; Jing WU ; Xiaohua ZENG
Cancer Research and Treatment 2025;57(1):126-139
Purpose:
This Phase II trial was objected to evaluate the efficacy and safety of adding fulvestrant to neoadjuvant chemotherapy in patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– locally advanced breast cancer (LABC). Additionally, the study aimed to investigate the association of 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) positron emission tomography (PET)–computed tomography (CT) and metabolites with efficacy.
Materials and Methods:
Fulvestrant and EC-T regimen were given to ER+/HER2– LABC patients before surgery. At baseline, patients received 18F-FES PET-CT scan, and plasma samples were taken for liquid chromatography–mass spectrometry analysis. The primary endpoint was objective response rate (ORR). Secondary endpoints included total pathologic complete response (tpCR) and safety.
Results:
Among the 36 patients enrolled, the ORR was 86.1%, the tpCR rate was 8.3%. The incidence of grade ≥ 3 treatment-emergent adverse events was 22%. The decrease in ER value in sensitive patients was larger than that in non-sensitive patients, as was Ki-67 (p < 0.05). The maximum standardized uptake value, mean standardized uptake values, total lesion ER expression of 18F-FES PET-CT in sensitive patients were significantly higher than those in non-sensitive patients (p < 0.05). Moreover, these parameters were significantly correlated with Miller and Payne grade and the change in ER expression before and after treatment (p < 0.05). Thirteen differential expressed metabolites were identified, which were markedly enriched in 19 metabolic pathways.
Conclusion
This regimen demonstrated acceptable toxicity and encouraging antitumor efficacy. 18F-FES PET-CT might serve as a tool to predict the effectiveness of this therapy. Altered metabolites or metabolic pathways might be associated with treatment response.
6.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
7.A Single-Arm Phase II Clinical Trial of Fulvestrant Combined with Neoadjuvant Chemotherapy of ER+/HER2– Locally Advanced Breast Cancer: Integrated Analysis of 18F-FES PET-CT and Metabolites with Treatment Response
Qing SHAO ; Ningning ZHANG ; Xianjun PAN ; Wenqi ZHOU ; Yali WANG ; Xiaoliang CHEN ; Jing WU ; Xiaohua ZENG
Cancer Research and Treatment 2025;57(1):126-139
Purpose:
This Phase II trial was objected to evaluate the efficacy and safety of adding fulvestrant to neoadjuvant chemotherapy in patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– locally advanced breast cancer (LABC). Additionally, the study aimed to investigate the association of 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) positron emission tomography (PET)–computed tomography (CT) and metabolites with efficacy.
Materials and Methods:
Fulvestrant and EC-T regimen were given to ER+/HER2– LABC patients before surgery. At baseline, patients received 18F-FES PET-CT scan, and plasma samples were taken for liquid chromatography–mass spectrometry analysis. The primary endpoint was objective response rate (ORR). Secondary endpoints included total pathologic complete response (tpCR) and safety.
Results:
Among the 36 patients enrolled, the ORR was 86.1%, the tpCR rate was 8.3%. The incidence of grade ≥ 3 treatment-emergent adverse events was 22%. The decrease in ER value in sensitive patients was larger than that in non-sensitive patients, as was Ki-67 (p < 0.05). The maximum standardized uptake value, mean standardized uptake values, total lesion ER expression of 18F-FES PET-CT in sensitive patients were significantly higher than those in non-sensitive patients (p < 0.05). Moreover, these parameters were significantly correlated with Miller and Payne grade and the change in ER expression before and after treatment (p < 0.05). Thirteen differential expressed metabolites were identified, which were markedly enriched in 19 metabolic pathways.
Conclusion
This regimen demonstrated acceptable toxicity and encouraging antitumor efficacy. 18F-FES PET-CT might serve as a tool to predict the effectiveness of this therapy. Altered metabolites or metabolic pathways might be associated with treatment response.
8.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
9.Study on the mechanism of electroacupuncture stimulation to activate the acupoint effect and promote skeletal muscle repair
Yuting HUANG ; Jun LIAO ; Tianyu RAO ; Kezhi LIU ; Jia LIN ; Yuye LIN ; Chufan ZENG ; Guojun ZHANG ; Xia ZHANG ; Xiubing TONG ; Jingyu ZHANG ; Yu KAN ; Yanping FANG ; Xianghong JING ; Xuan WANG
Journal of Beijing University of Traditional Chinese Medicine 2024;47(8):1160-1170
Objective To investigate the mechanism of inducing macrophage polarization induced by acupoint effect of electroacupuncture to promote the repair of acute skeletal muscle injury.Methods 45 SD rats were randomly divided into blank group,model group,electroacupuncture group(EA group),sodium chrominate group (DSCG group) and electroacupuncture+sodium chrominate group (hereinafter referred to as EA+DSCG group),with 9 rats in each group. The rats in the EA group and the EA+DSCG group were subjected to EA intervention at the right "Chengshan" (BL57) and "Yanglingquan"(GB34),with a frequency of 2 Hz/100 Hz. The gait changes of rats were recorded by animal gait analyzer. The morphological changes of the right gastrocnemius were observed by HE staining. The changes of mast cell aggregation and degranulation in local skin muscles of "chengshan" point were observed by toluidine blue staining. The expressions of Pax7,MyoD and skin mast cells and 5-HT in the right gastrocnemius were detected by immunofluorescence method. The positive expressions of CD68 and CD206 in right gastrocnemius macrophage was observed by immunohistochemical staining.Results Compared with blank group,the wiggle time of the right hind leg in model group and DSCG group increased,stride length decreased,HE staining showed inflammatory cell infiltration,myocyte enlargement,degeneration and necrosis. The degranulation rate of local skin mast cells in "Chengshan" (BL57) area increased,and the expressions of mast cell tryptase,5-HT,Pax7,MyoD,CD68 and CD206 increased (P<0.05). Compared with model group,the wiggle time of the right hind leg in EA group and EA+DSCG group decreased,stride length increased,HE staining showed that inflammatory cell infiltration was reduced,muscle cells were uniform in size and arranged neatly. Mast cell degranulation rate increased significantly in EA group,and the expressions of mast cell tryptase,5-HT,Pax7,MyoD and CD206 increased (P<0.05),while CD68 expression decreased (P<0.05). Compared with EA+DSCG group,the degranulation rate of mast cells and the expressions of mast cell tryptase,5-HT,Pax7,MyoD and CD206 increased (P<0.05),while CD68 expression decreased in EA group (P<0.05). Conclusion EA "Chengshan" (BL57) and "Yanglingquan" (GB34) can stimulate acupuncture points to locally induce mast cell degranulation,promote the polarization of macrophages,and then activate muscle satellite cells to play the regulatory process of repairing skeletal muscle injury.
10.Analysis and application of the characteristic components associated with the processing excipients "wine, vinegar, salt, honey": a case study of honey-processed Astragali Radix
Wei-ye ZHANG ; Jing-qi ZENG ; Jin-jing SONG ; Tian-hao QI ; Liang FENG ; Xiao-bin JIA ; Bing YANG
Acta Pharmaceutica Sinica 2024;59(6):1819-1827
The excipient processing is an essential part of traditional Chinese medicine processing, and understanding its scientific connotations is a critical scientific issue that urgently needs resolution. Building upon a foundation where the composition of traditional Chinese medicine substances is fundamentally clear, this paper applies the techniques and methods of chemoinformatics to the study of the excipient processing mechanism. Relevant information on traditional Chinese medicines processed with four kinds of excipients (wine, vinegar, salt and honey) was collected, including properties, taste, meridian tropism, chemical components, etc. Molecular descritors and skeletons corresponding to each chemical component were calculated using chemoinformatics to characterize the properties and structural features of the components. Characteristic components associated with the four excipients (wine, vinegar, salt and honey) were explored through multivariate statistical analysis and Murcko skeleton analysis. Further analysis, taking honey-processed

Result Analysis
Print
Save
E-mail