1.Research on Regulatory Mechanism of Verbenalin on HCoV-229E-infected Macrophage Injury Based on Mitophagy
Qiyue SUN ; Lei BAO ; Zihan GENG ; Ronghua ZHAO ; Shuran LI ; Xihe CUI ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Shanshan GUO ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):29-37
ObjectiveTo investigate the protective effect and mechanism of verbenalin on mouse mononuclear macrophage leukemia cells (RAW264.7) damaged by human coronavirus (HCoV)-229E infection, thereby providing experimental evidence for its development and application. MethodsRAW264.7 macrophages were infected with different concentrations of HCoV-229E to establish a coronavirus-induced macrophage injury model using the cell counting kit-8 (CCK-8) assay for assessing cell proliferation and viability. Cells were randomly divided into four groups: normal control, verbenalin group (125 μmol·L-1), model group (HCoV-229E), and HCoV-229E + verbenalin group (HCoV-229E + 125 μmol·L-1 verbenalin). Cell viability was measured using the CCK-8 assay, and the maximum non-toxic concentration (CC0), half-maximal cytotoxic concentration (CC50), half-maximal effective concentration (EC50), and selectivity index (SI) of verbenalin were calculated. Calcein/PI double staining was used to assess cell viability and cytotoxicity, and JC-1 staining was applied to evaluate changes in mitochondrial membrane potential (MMP). mito-Keima adenovirus labeling was used to assess mitophagy levels in each group. ResultsA macrophage infection model was successfully established by infecting RAW264.7 cells with the original concentration of HCoV-229E for 36 h. The CC0 of verbenalin was 125 μmol·L-1. The CC50 was 448.25 μmol·L-1. The EC50 against HCoV-229E-infected cells was 46.28 μmol·L-1, and the SI was 9.68. Compared with the normal group, the model group showed significantly reduced cell survival rate (P<0.01), increased cell death rate (P<0.01), decreased MMP (P<0.01), and suppressed mitophagy (P<0.01). In contrast, verbenalin treatment significantly improved cell survival rate (P<0.01), reduced cell death rate (P<0.01), alleviated MMP loss (P<0.01), and enhanced mitophagy levels (P<0.01) compared with the model group. ConclusionVerbenalin can enhance the survival rate of macrophages following HCoV-229E infection. The underlying mechanism may be associated with the activation of mitophagy, maintenance of MMP stability, and alleviation of mitochondrial damage.
2.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
3.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
4.Research on Regulatory Mechanism of Verbenalin on HCoV-229E-infected Macrophage Injury Based on Mitophagy
Qiyue SUN ; Lei BAO ; Zihan GENG ; Ronghua ZHAO ; Shuran LI ; Xihe CUI ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Shanshan GUO ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):29-37
ObjectiveTo investigate the protective effect and mechanism of verbenalin on mouse mononuclear macrophage leukemia cells (RAW264.7) damaged by human coronavirus (HCoV)-229E infection, thereby providing experimental evidence for its development and application. MethodsRAW264.7 macrophages were infected with different concentrations of HCoV-229E to establish a coronavirus-induced macrophage injury model using the cell counting kit-8 (CCK-8) assay for assessing cell proliferation and viability. Cells were randomly divided into four groups: normal control, verbenalin group (125 μmol·L-1), model group (HCoV-229E), and HCoV-229E + verbenalin group (HCoV-229E + 125 μmol·L-1 verbenalin). Cell viability was measured using the CCK-8 assay, and the maximum non-toxic concentration (CC0), half-maximal cytotoxic concentration (CC50), half-maximal effective concentration (EC50), and selectivity index (SI) of verbenalin were calculated. Calcein/PI double staining was used to assess cell viability and cytotoxicity, and JC-1 staining was applied to evaluate changes in mitochondrial membrane potential (MMP). mito-Keima adenovirus labeling was used to assess mitophagy levels in each group. ResultsA macrophage infection model was successfully established by infecting RAW264.7 cells with the original concentration of HCoV-229E for 36 h. The CC0 of verbenalin was 125 μmol·L-1. The CC50 was 448.25 μmol·L-1. The EC50 against HCoV-229E-infected cells was 46.28 μmol·L-1, and the SI was 9.68. Compared with the normal group, the model group showed significantly reduced cell survival rate (P<0.01), increased cell death rate (P<0.01), decreased MMP (P<0.01), and suppressed mitophagy (P<0.01). In contrast, verbenalin treatment significantly improved cell survival rate (P<0.01), reduced cell death rate (P<0.01), alleviated MMP loss (P<0.01), and enhanced mitophagy levels (P<0.01) compared with the model group. ConclusionVerbenalin can enhance the survival rate of macrophages following HCoV-229E infection. The underlying mechanism may be associated with the activation of mitophagy, maintenance of MMP stability, and alleviation of mitochondrial damage.
5.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
6.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
7.Proteomics-based Investigation of Therapeutic Effect and Mechanism of Verbenalin on Lung Injury in Mice Infected with Human Coronavirus-229E
Qiyue SUN ; Shanshan GUO ; Shuangrong GAO ; Lei BAO ; Zihan GENG ; Shuran LI ; Ronghua ZHAO ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):69-78
ObjectiveTo evaluate the pharmacological effects of verbenalin on both in vitro and in vivo infection models of human coronavirus 229E (HCoV-229E) and to preliminarily explore the antiviral mechanism of verbenalin through proteomic analysis. MethodsIn vitro, the cell counting kit-8 (CCK-8) for cell proliferation and viability assessment was used to establish a model of HCoV-229E-induced injury in human lung adenocarcinoma cells(A549). A549 cells were divided into five groups: normal group, model group, and three verbenalin treatment groups (125, 62.5, and 31.25 μmol·L-1). The cell protective activity of verbenalin was evaluated through cell viability assay and immunofluorescence staining. In vivo, 30 BALB/c mice were randomly divided into normal group, model group, chloroquine group, and high-dose, low-dose verbenalin groups (40 and 20 mg·kg-1), with six mice per group. An HCoV-229E-induced mouse lung injury model was established to evaluate the therapeutic effects of verbenalin. Lung injury was assessed by detecting the lung index and lung inhibition rate. The severity of pulmonary inflammation cytokines was measured by enzyme-linked immunosorbent assay (ELISA), while the lung morphology and structure were analyzed by micro-computed tomography (Micro-CT). Hematoxylin and eosin (HE) staining was used to assess histopathological changes in lung tissue. Additionally, four-dimensional data-independent acquisition (4D-DIA) proteomics was employed to preliminarily explore the potential mechanisms of verbenalin in treating HCoV-229E-induced lung injury in mice, through differential protein expression screening, functional annotation, enrichment analysis, and protein-protein interaction network analysis. ResultsThe A549 cells were infected with HCoV-229E at the original viral titer for 36 hours to establish an in vitro infection model. The maximum non-toxic concentration of verbenalin was 125 μmol·L-1, and the half-maximal cytotoxic concentration (CC50) was 288.8 μmol·L-1. Compared with the normal group, the model group showed a significant decrease in cell viability (P<0.01), a significant increase in the proportion of dead cells (P<0.01), mitochondrial damage, and a significant reduction in mitochondrial membrane potential (P<0.01). After treatment with different concentrations of verbenalin (125, 62.5, and 31.25 μmol·L-1), cell viability was significantly increased (P<0.01), and the proportion of dead cells was reduced (P<0.01), with mitochondrial membrane potential restored (P<0.01). In vivo experiments further confirmed the therapeutic effect of verbenalin on HCoV-229E-infected mice. Compared to the normal group, the model group showed a significant increase in the lung index (P<0.01), severe lung tissue injury, lung volume enlargement, and a significant increase in the expression of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (P<0.01). In contrast, in the verbenalin treatment groups, these pathological changes were significantly improved, with a reduction in the lung index (P<0.01), alleviation of lung tissue injury, reduced lung volume enlargement, and a significant decrease in inflammatory cytokine expression (P<0.01). Proteomics analysis revealed that, compared to the normal group, the model group showed enrichment in several antiviral immune-related signaling pathways, including the nuclear factor-κB (NF-κB) signaling pathway (P<0.05). Compared to the model group, the verbenalin treatment group showed enrichment in several signaling pathways related to inflammatory response and autophagy (P<0.05), suggesting that verbenalin may exert its antiviral and anti-inflammatory effects by regulating these pathways. ConclusionVerbenalin demonstrates significant therapeutic effects in both in vitro and in vivo HCoV-229E infection models, with its mechanism likely related to the NOD-like receptor protein 3 (NLRP3) inflammasome pathway and mitochondrial autophagy.
8.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
9.Research progress in key technologies for the development of Dendrobium officinale: from a rare and endangered species to a 10-billion-RMB-level industry.
Jing-Jing LIU ; Qiao-Xian YU ; Dong-Hong CHEN ; Ling-Shang WU ; Jin-Ping SI
China Journal of Chinese Materia Medica 2025;50(13):3670-3678
Dendrobium officinale(DO) is a traditional Chinese medicinal and edible plant, while it is critically endangered worldwide. This article, primarily based on the original research findings of the author's team and available articles, provides a comprehensive overview of the factors contributing to the endangerment of DO and the key technologies for the conservation, efficient cultivation, and value-added utilization of this plant. The scarcity of wild populations, low seed-setting rates, lack of endosperm in seeds, and the need for symbiosis with endophytic fungi for seed germination under natural conditions are identified as the primary causes for the rarity and endangerment of DO. Artificial seed production and tissue culture are highlighted as key technologies for alleviating the endangered status. The physiological and ecological mechanisms underlying the adaptation of DO to epiphytic growth are explored, and it is proposed that breaking the coupling of high temperature and high humidity is essential for preventing southern blight, a devastating affliction of DO. The roles of endophytic fungi in promoting the growth, improving the quality, and enhancing the stress resistance of DO are discussed. Furthermore, the integration of variety breeding, environment selection, and co-culture with endophytic fungi is emphasized as a crucial approach for efficient cultivation. The value-added applications of DO in pharmaceuticals, health foods, food products, and daily chemicals-particularly in the food and daily chemical industries-are presented as key drivers for a 10-billion-RMB-level industry. This systematic review offers valuable insights for the further development, utilization, and industrialization of DO resources, as well as for the broader application of conservation strategies for other rare and endangered plant species.
Dendrobium/microbiology*
;
Endangered Species
;
Seeds/microbiology*
;
Fungi/physiology*
10.Associations of Ureaplasma urealyticum infection with male infertility and intrauterine insemination outcomes.
Yang-Yang WAN ; Xiao-Yun SHI ; Wen-Jing LIU ; Shun BAI ; Xin CHEN ; Si-Yao LI ; Xiao-Hua JIANG ; Li-Min WU ; Xian-Sheng ZHANG ; Juan HUA
Asian Journal of Andrology 2025;27(2):219-224
Ureaplasma urealyticum (UU) is one of the most commonly occurring pathogens associated with genital tract infections in infertile males, but the impact of seminal UU infection in semen on intrauterine insemination (IUI) outcomes is poorly understood. We collected data from 245 infertile couples who underwent IUI at The First Affiliated Hospital of USTC (Hefei, China) between January 2021 and January 2023. The subjects were classified into two groups according to their UU infection status: the UU-positive group and the UU-negative group. We compared semen parameters, pregnancy outcomes, and neonatal birth outcomes to investigate the impact of UU infection on IUI outcomes. There were no significantly statistical differences in various semen parameters, including semen volume, sperm concentration, total and progressive motility, sperm morphology, leukocyte count, the presence of anti-sperm antibody, and sperm DNA fragmentation index (DFI), between the UU-positive and UU-negative groups of male infertile patients (all P > 0.05). However, the high DNA stainability (HDS) status of sperm differed between the UU-positive and UU-negative groups, suggesting that seminal UU infection may affect sperm nuclear maturation ( P = 0.04). Additionally, there were no significant differences in pregnancy or neonatal birth outcomes between the two groups (all P > 0.05). These results suggest that IUI remains a viable and cost-effective option for infertile couples with UU infection who are facing infertility issues.
Humans
;
Male
;
Ureaplasma Infections/complications*
;
Female
;
Infertility, Male/therapy*
;
Ureaplasma urealyticum/isolation & purification*
;
Pregnancy
;
Adult
;
Pregnancy Outcome
;
Semen Analysis
;
Insemination, Artificial
;
Semen/microbiology*
;
China

Result Analysis
Print
Save
E-mail