1.Jianpi Yiqi Prescription Inhibits Proliferation and Invasion of Hepatic Carcinoma Cells by Targeting PTPN1
Shanshan SUN ; Jing HONG ; Shufan SONG ; Zongxi SUN ; Chao WANG ; Shaoyuan ZHUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):80-88
ObjectiveTo investigate the key targets of Jianpi Yiqi prescription (JYP) in the treatment of hepatocellular carcinoma (HCC) based on network pharmacology and explore the effect of JYP on the invasion and proliferation of hepatocellular carcinoma cells via protein tyrosine phosphatase, non-receptor type 1 (PTPN1) by bioinformatics analysis and CRISPR/Cas9. MethodsThe potential targets of JYP in the treatment of HCC were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), SwissTargetPrediction, GeneCards, NCBI, and CTD. Additionally, the active components of JYP that could interact with PTPN1 were screened out, and then molecular docking between the targets and active components was performed in Autodock 4.0. UALCAN, HPA, and LinkedOmics were used to analyze the expression of PTPN1 in the HCC tissue, and the relationship of PTPN1 expression with the overall survival (OS) of HCC patients was discussed. CRISPR/Cas9 was used to knock down the expression of PTPN1 in HepG2 and SK-hep-1 cells, and the knockdown effect was examined by sequencing, Real-time PCR, and Western blot. HepG2 cells were classified into blank control, low-, medium-, and high-dose JYP (5.25, 10.5, 21 g·kg-1), and PTPN1 knockout groups. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of PTPN1 in HepG2 cells of each group. The effects of JYP and PTPN1 knockdown on the proliferation, invasion, and apoptosis of HepG2 cells were detected by Cell Counting Kit-8 (CCK-8), Transwell, and Annexin V-FITC/PI methods, respectively. ResultsJYP had the most active components targeting PTPN1, and 31 of the active components had the binding energy less than -5.0 kcal·mol-1 in molecular docking. The mRNA and protein levels of PTPN1 in the HCC tissue were higher than those in the normal tissue (P<0.01). Compared with that in the normal tissue, the mRNA level of PTPN1 in the HCC tissue was up-regulated at the pathological stages Ⅰ-Ⅲ and grades G1-G3 (P<0.01), and it was not significantly up-regulated at the stage Ⅳ or grade G4. The mRNA level of PTPN1 in the TP53-mutated HCC tissue was higher than that in the TP53-unmutated HCC tissue (P<0.01). The high mRNA level of PTPN1 was associated with the OS reduction (P<0.01). After treatment with the JYP-containing serum or knockdown of PTPN1, HepG2 cells demonstrated decreased proliferation and invasion and increased apoptosis (P<0.01). ConclusionPTPN1 may be one of the core targets of JYP in the treatment of HCC. It is highly expressed in the HCC tissue and cells, which is associated with the poor prognosis of patients. The expression level of PTPN1 is significantly up-regulated in the HCC tissue of the patients with TP53 mutation. However, TP53 mutation or deletion does not affect the expression of PTPN1 in HCC cells. JYP can significantly down-regulate the expression of PTPN1 to inhibit the proliferation and invasion and promote the apoptosis of HCC cells.
2.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management.
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics.
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system.
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
3.Pathogenesis and treatment progress of flap ischemia-reperfusion injury
Bo HE ; Wen CHEN ; Suilu MA ; Zhijun HE ; Yuan SONG ; Jinpeng LI ; Tao LIU ; Xiaotao WEI ; Weiwei WANG ; Jing XIE
Chinese Journal of Tissue Engineering Research 2025;29(6):1230-1238
BACKGROUND:Flap transplantation technique is a commonly used surgical procedure for the treatment of severe tissue defects,but postoperative flap necrosis is easily triggered by ischemia-reperfusion injury.Therefore,it is still an important research topic to improve the survival rate of transplanted flaps. OBJECTIVE:To review the pathogenesis and latest treatment progress of flap ischemia-reperfusion injury. METHODS:CNKI,WanFang Database and PubMed database were searched for relevant literature published from 2014 to 2024.The search terms used were"flap,ischemia-reperfusion injury,inflammatory response,oxidative stress,Ca2+overload,apoptosis,mesenchymal stem cells,platelet-rich plasma,signaling pathways,shock wave,pretreatment"in Chinese and English.After elimination of irrelevant literature,poor quality and obsolete literature,77 documents were finally included for review. RESULTS AND CONCLUSION:Flap ischemia/reperfusion injury may be related to pathological factors such as inflammatory response,oxidative stress response,Ca2+overload,and apoptosis,which can cause apoptosis of vascular endothelial cells,vascular damage and microcirculation disorders in the flap,and eventually lead to flap necrosis.Studies have found that mesenchymal stem cell transplantation,platelet-rich plasma,signaling pathway modulators,shock waves,and pretreatment can alleviate flap ischemia/reperfusion injuries from different aspects and to varying degrees,and reduce the necrosis rate and necrosis area of the grafted flap.Although there are many therapeutic methods for skin flap ischemia/reperfusion injury,a unified and effective therapeutic method has not yet been developed in the clinic,and the advantages and disadvantages of various therapeutic methods have not yet been compared.Most of the studies remain in the stage of animal experiments,rarely involving clinical observations.Therefore,a lot of research is required in the future to gradually move from animal experiments to the clinic in order to better serve the clinic.
4.Mechanism of Lijin manipulation regulating scar formation in skeletal muscle injury repair in rabbits
Kaiying LI ; Xiaoge WEI ; Fei SONG ; Nan YANG ; Zhenning ZHAO ; Yan WANG ; Jing MU ; Huisheng MA
Chinese Journal of Tissue Engineering Research 2025;29(8):1600-1608
BACKGROUND:Lijin manipulation can promote skeletal muscle repair and treat skeletal muscle injury.However,the formation of fibrosis and scar tissue hyperplasia are closely related to the quality of skeletal muscle repair.To study the regulatory effect of Lijin manipulation on the formation of fibrosis and scar tissue hyperplasia is helpful to explain the related mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury. OBJECTIVE:To explore the mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury in rabbits,thereby providing a scientific basis for clinical treatment. METHODS:Forty-five healthy adult Japanese large-ear white rabbits were randomly divided into blank group,model group and Lijin group,with 15 rats in each group.Gastrocnemius strike modeling was performed in both model group and Lijin group.The Lijin group began to intervene with tendon manipulation on the 3rd day after modeling,once a day,and 15 minutes at a time.Five animals in each group were killed on the 7th,14th and 21st days after modeling.The morphology and inflammatory cell count of gastrocnemius were observed by hematoxylin-eosin staining,the collagen fiber amount was observed by Masson staining,the expression of interleukin-6 and interleukin-10 in gastrocnemius was detected by ELISA.The protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin,alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen were detected by western blot and RT-PCR,respectively,and the expression of type Ⅰ collagen protein was detected by immunohistochemistry. RESULTS AND CONCLUSION:Hematoxylin-eosin staining and Masson staining showed that compared with the model group,inflammatory cell infiltration and collagen fiber content decreased in the Lijin group(P<0.01),and the muscle fibers gradually healed.ELISA results showed that compared with the model group,the expression of interleukin-6 in the Lijin group continued to decrease(P<0.05),and the expression of interleukin-10 increased on the 7th day after modeling(P<0.05)and then showed a decreasing trend(P<0.05).Western blot and RT-PCR results showed that compared with the model group,the protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin in the Lijin group were significantly increased on the 14th day after modeling(P<0.05),but decreased on the 21st day(P<0.05);the protein and mRNA expressions of alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen in the Lijin group were significantly decreased compared with those in the model group(P<0.05).Immunohistochemical results showed that the expression of type Ⅰ collagen in the Lijin group was significantly lower than that in the model group(P<0.05).To conclude,Lijin manipulation could improve the repair quality of skeletal muscle injury by inhibiting inflammation,promoting the proliferation and differentiation of muscle satellite cells,and reducing fibrosis.
5.Impact of Onset-to-Door Time on Endovascular Therapy for Basilar Artery Occlusion
Tianlong LIU ; Chunrong TAO ; Zhongjun CHEN ; Lihua XU ; Yuyou ZHU ; Rui LI ; Jun SUN ; Li WANG ; Chao ZHANG ; Jianlong SONG ; Xiaozhong JING ; Adnan I. QURESHI ; Mohamad ABDALKADER ; Thanh N. NGUYEN ; Raul G. NOGUEIRA ; Jeffrey L. SAVER ; Wei HU
Journal of Stroke 2025;27(1):140-143
6.Study on the influential factors of blood concentration for duloxetine based on therapeutic drug monitoring
Yang LUN ; Liguang DUAN ; Feiyue AN ; Ran FU ; Jing YU ; Chaoli CHEN ; Mengqiang ZHAO ; Shi SU ; Yang SONG ; Jiaqi WANG ; Yuhang YAN ; Chunhua ZHOU
China Pharmacy 2025;36(6):727-731
OBJECTIVE To explore the main factors influencing the blood concentration of duloxetine, and provide a scientific basis for the individualized use of duloxetine. METHODS Retrospective analysis was conducted on 434 inpatients with depressive disorders at the First Hospital of Hebei Medical University, who were treated with duloxetine and underwent blood concentration monitoring between January 2022 and April 2024. The study examined the impact of various factors, including gender, age, body mass index (BMI), gene phenotypes, combined medication, drug type (original/generic), and genotyping results of gene single nucleotide polymorphism loci, on blood concentration and the concentration-to-dose (C/D) after dose adjustment. RESULTS The blood concentration of duloxetine was 76.65 (45.57, 130.31) ng/mL, and C/D was 0.96 (0.63, 1.60) ng·d/(mL·mg). The blood concentration of duloxetine was positively correlated with the daily dose of administration (R2=0.253 7, P<0.001). Blood concentration of duloxetine in 38.94% of patients exceeded the recommended range specified in the guidelines. Gender, age, BMI, combined use of CYP2D6 enzyme inhibitors, and CYP2D6 and CYP1A2 phenotypes had significant effects on C/D of duloxetine (P<0.05). CONCLUSIONS The patient’s age, gender, BMI, combined medication, and genetic phenotypes are closely related to the blood concentration of duloxetine.
7.Correlation of the steady-state minimal concentration with AUC24/MIC of vancomycin and analysis of risk factors for treatment failure in pediatric patients
Jinxiang LIN ; Youhong WANG ; Zhifeng XIAO ; Jing WANG ; Ying SONG ; Ningfang CAI ; Xiuping WU
China Pharmacy 2025;36(9):1093-1098
OBJECTIVE To assess the correlation between the steady-state minimal concentration (cmin) and 24 h area under the drug concentration-time curve (AUC24)/minimal inhibitory concentration (MIC) ratio (AUC24/MIC) of vancomycin in pediatric patients, and analyze independent risk factors for treatment failure. METHODS Data of hospitalized children treated with vancomycin and receiving therapeutic drug monitoring in our hospital from January 2021 to July 2024 were retrospectively collected and divided into success group and failure group according to whether the treatment was successful or not. Spearman correlation analysis was used to analyze the correlation between cmin and AUC24/MIC of vancomycin, and one-way and multifactorial Logistic regression analyses were used to screen the independent risk factors for vancomycin treatment failure. RESULTS A total of 59 children were included, with 41 in the success group and 18 in the failure group. Compared with the failure group, AUC24/MIC of vancomycin was significantly higher in the success group (P=0.038), but there was no statistically significant difference in the cmin of the two groups (P>0.05); cmin of vancomycin was significantly positively correlated with AUC24/MIC (r=0.499, P<0.001), but it has a certain efficacy in predicting the achievement of the AUC24/MIC standard (≥400) (area under the receiver operator characteristic curve=0.696), with an optimal cutoff value of 6.05 mg/L determined by the Youden index. The efficacy of AUC24/ MIC in predicting treatment failure was superior to cmin (areas under the receiver operator characteristic curve were 0.671 vs. 0.523, P were 0.038 vs. 0.684), with higher sensitivity (83.3% vs. 66.7%). Hypoproteinemia and AUC24/MIC≤369.1 were independent risk factors for vancomycin treatment failure (P<0.05). The incidence of nephrotoxicity was 3.4%. CONCLUSIONS There is a significant positive correlation between cmin and AUC24/MIC of vancomycin in pediatric patients; hypoproteinemia and AUC24/MIC≤369.1 are independent risk factors for vancomycin treatment failure in children.
8.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
9.Application of Engineered Exosomes in Tumor-targeted Therapy
Jia-Lu SONG ; Yi-Xin JIN ; Xing-Yu MU ; Yu-Huan JIANG ; Jing WANG
Progress in Biochemistry and Biophysics 2025;52(5):1140-1151
Tumors are the second leading cause of death worldwide. Exosomes are a type of extracellular vesicle secreted from multivesicular bodies, with particle sizes ranging from 40 to 160 nm. They regulate the tumor microenvironment, proliferation, and progression by transporting proteins, nucleic acids, and other biomolecules. Compared with other drug delivery systems, exosomes derived from different cells possess unique cellular tropism, enabling them to selectively target specific tissues and organs. This homing ability allows them to cross biological barriers that are otherwise difficult for conventional drug delivery systems to penetrate. Due to their biocompatibility and unique biological properties, exosomes can serve as drug delivery systems capable of loading various anti-tumor drugs. They can traverse biological barriers, evade immune responses, and specifically target tumor tissues, making them ideal carriers for anti-tumor therapeutics. This article systematically summarizes the methods for exosome isolation, including ultracentrifugation, ultrafiltration, size-exclusion chromatography (SEC), immunoaffinity capture, and microfluidics. However, these methods have certain limitations. A combination of multiple isolation techniques can improve isolation efficiency. For instance, combining ultrafiltration with SEC can achieve both high purity and high yield while reducing processing time. Exosome drug loading methods can be classified into post-loading and pre-loading approaches. Pre-loading is further categorized into active and passive loading. Active loading methods, including electroporation, sonication, extrusion, and freeze-thaw cycles, involve physical or chemical disruption of the exosome membrane to facilitate drug encapsulation. Passive loading relies on drug concentration gradients or hydrophobic interactions between drugs and exosomes for encapsulation. Pre-loading strategies also include genetic engineering and co-incubation methods. Additionally, we review approaches to enhance the targeting, retention, and permeability of exosomes. Genetic engineering and chemical modifications can improve their tumor-targeting capabilities. Magnetic fields can also be employed to promote the accumulation of exosomes at tumor sites. Retention time can be prolonged by inhibiting monocyte-mediated clearance or by combining exosomes with hydrogels. Engineered exosomes can also reshape the tumor microenvironment to enhance permeability. This review further discusses the current applications of exosomes in delivering various anti-tumor drugs. Specifically, exosomes can encapsulate chemotherapeutic agents such as paclitaxel to reduce side effects and increase drug concentration within tumor tissues. For instance, exosomes loaded with doxorubicin can mitigate cardiotoxicity and minimize adverse effects on healthy tissues. Furthermore, exosomes can encapsulate proteins to enhance protein stability and bioavailability or carry immunogenic cell death inducers for tumor vaccines. In addition to these applications, exosomes can deliver nucleic acids such as siRNA and miRNA to regulate gene expression, inhibit tumor proliferation, and suppress invasion. Beyond their therapeutic applications, exosomes also serve as tumor biomarkers for early cancer diagnosis. The detection of exosomal miRNA can improve the sensitivity and specificity of diagnosing prostate and pancreatic cancers. Despite their promising potential as drug delivery systems, challenges remain in the standardization and large-scale production of exosomes. This article explores the future development of engineered exosomes for targeted tumor therapy. Plant-derived exosomes hold potential due to their superior biocompatibility, lower toxicity, and abundant availability. Furthermore, the integration of exosomes with artificial intelligence may offer novel applications in diagnostics, therapeutics, and personalized medicine.
10.Expert consensus on the deployment of DeepSeek in medical institutions
Yanlin CAO ; Jing WANG ; Yuxi LI ; Yi ZHANG ; Guangzhen ZHONG ; Ping SONG
Chinese Medical Ethics 2025;38(5):674-678
The Expert Consensus on the Deployment of DeepSeek in Medical Institutions serves as a detailed guideline for the deployment of DeepSeek in medical institutions. It was developed by experts in the fields of healthcare, hospital management, medical information, health policy, law, and medical ethics from nearly 30 leading domestic medical and academic research institutions, based on relevant domestic and international laws and regulations as well as the practices of medical institutions. It aims to provide medical institutions with a scientific, standardized, and secure deployment guideline to ensure that the application of artificial intelligence (AI) technologies in healthcare, including but not limited to DeepSeek, conforms to the unique characteristics of the healthcare industry and effectively promotes the improvement of medical service levels. From the three aspects of pre-deployment evaluation, deployment implementation, and post-deployment management and monitoring, the key factors that medical institutions should consider when introducing DeepSeek were elaborated in detail, including medical demand compatibility, technical capabilities and infrastructure, legal and ethical risks, data preparation and management, model selection and optimization, system integration and training, performance monitoring and continuous optimization, risk management and emergency response, as well as compliance review and evaluation. This provides a comprehensive deployment framework for medical institutions to ensure the safety and effectiveness of technology applications.

Result Analysis
Print
Save
E-mail