1.Correlation of the expression levels of ANGPTL4 and SDF-1 in serum with the severity of disease in patients with diabetic macular edema
Ping LI ; Jing WU ; Jie LI ; Kai WANG
International Eye Science 2025;25(3):461-464
AIM: To investigate the correlation of the expression of stromal cell-derived factor-1(SDF-1)and angiopoietin like protein 4(ANGPTL4)in serum with the severity of disease in patients with diabetic macular edema(DME).METHODS: From April 2020 to August 2023, 193 patients with diabetic retinopathy who were admitted to our hospital were prospectively separated into DME group(128 cases)(56 cases in mild group, 44 cases in moderate group, 28 cases in severe group)and non DME group(65 cases)according to whether the patients had macular edema and the severity of disease. Enzyme-linked immunosorbent assay(ELISA)was applied to determine the levels of ANGPTL4 and SDF-1 in serum. Multivariate Logistic regression was applied to analyze the factors that affected the severity of DME; receiver operating characteristic(ROC)curve was applied to analyze the diagnostic value of ANGPTL4 and SDF-1 levels in serum of DME patients for the severity of DME.RESULTS: The levels of ANGPTL4 and SDF-1 in serum of the DME group were obviously higher than those of the non DME group(P<0.01); the expression levels of ANGPTL4 and SDF-1 in serum of the mild, moderate, and severe groups increased obviously in sequence(P<0.05); multivariate Logistic regression analysis showed that the levels of ANGPTL4 and SDF-1 in serum were risk factors affecting the severity of DME(P<0.01); The area under the curve(AUC)of serum SDF-1 in the diagnosis of DME severity was 0.772(95%CI: 0.690-0.842), and the AUC of ANGPTL4 in the diagnosis of DME severity was 0.801(95%CI: 0.722-0.867). The AUC of ANGPTL4 combined with SDF-1 in the diagnosis of DME was 0.884(95%CI: 0.816-0.934), the sensitivity was 87.50%, and the specificity was 85.71%, which were significantly higher than ANGPTL4 or SDF-1 alone(Z=2.658, 2.469, all P<0.05).CONCLUSION: The levels of ANGPTL4 and SDF-1 in serum of DME patients are significantly increased, and their levels increase with the severity of the disease. They can be used as auxiliary indicators for diagnosing the severity of DME disease, and the combined diagnosis has a better effect.
2.Correlation of the expression levels of ANGPTL4 and SDF-1 in serum with the severity of disease in patients with diabetic macular edema
Ping LI ; Jing WU ; Jie LI ; Kai WANG
International Eye Science 2025;25(3):461-464
AIM: To investigate the correlation of the expression of stromal cell-derived factor-1(SDF-1)and angiopoietin like protein 4(ANGPTL4)in serum with the severity of disease in patients with diabetic macular edema(DME).METHODS: From April 2020 to August 2023, 193 patients with diabetic retinopathy who were admitted to our hospital were prospectively separated into DME group(128 cases)(56 cases in mild group, 44 cases in moderate group, 28 cases in severe group)and non DME group(65 cases)according to whether the patients had macular edema and the severity of disease. Enzyme-linked immunosorbent assay(ELISA)was applied to determine the levels of ANGPTL4 and SDF-1 in serum. Multivariate Logistic regression was applied to analyze the factors that affected the severity of DME; receiver operating characteristic(ROC)curve was applied to analyze the diagnostic value of ANGPTL4 and SDF-1 levels in serum of DME patients for the severity of DME.RESULTS: The levels of ANGPTL4 and SDF-1 in serum of the DME group were obviously higher than those of the non DME group(P<0.01); the expression levels of ANGPTL4 and SDF-1 in serum of the mild, moderate, and severe groups increased obviously in sequence(P<0.05); multivariate Logistic regression analysis showed that the levels of ANGPTL4 and SDF-1 in serum were risk factors affecting the severity of DME(P<0.01); The area under the curve(AUC)of serum SDF-1 in the diagnosis of DME severity was 0.772(95%CI: 0.690-0.842), and the AUC of ANGPTL4 in the diagnosis of DME severity was 0.801(95%CI: 0.722-0.867). The AUC of ANGPTL4 combined with SDF-1 in the diagnosis of DME was 0.884(95%CI: 0.816-0.934), the sensitivity was 87.50%, and the specificity was 85.71%, which were significantly higher than ANGPTL4 or SDF-1 alone(Z=2.658, 2.469, all P<0.05).CONCLUSION: The levels of ANGPTL4 and SDF-1 in serum of DME patients are significantly increased, and their levels increase with the severity of the disease. They can be used as auxiliary indicators for diagnosing the severity of DME disease, and the combined diagnosis has a better effect.
3.Determination of biological activity of teduglutide by a homogeneous time-resolved fluorescence method
Xiao-ming ZHANG ; Ran MA ; Li-jing LÜ ; Lü-yin WANG ; Ping LÜ ; Cheng-gang LIANG ; Jing LI
Acta Pharmaceutica Sinica 2025;60(1):211-217
In this study, we constructed a GLP-2R-HEK293 cell line and established a method for the determination of the
4.Expert consensus on the deployment of DeepSeek in medical institutions
Yanlin CAO ; Jing WANG ; Yuxi LI ; Yi ZHANG ; Guangzhen ZHONG ; Ping SONG
Chinese Medical Ethics 2025;38(5):674-678
The Expert Consensus on the Deployment of DeepSeek in Medical Institutions serves as a detailed guideline for the deployment of DeepSeek in medical institutions. It was developed by experts in the fields of healthcare, hospital management, medical information, health policy, law, and medical ethics from nearly 30 leading domestic medical and academic research institutions, based on relevant domestic and international laws and regulations as well as the practices of medical institutions. It aims to provide medical institutions with a scientific, standardized, and secure deployment guideline to ensure that the application of artificial intelligence (AI) technologies in healthcare, including but not limited to DeepSeek, conforms to the unique characteristics of the healthcare industry and effectively promotes the improvement of medical service levels. From the three aspects of pre-deployment evaluation, deployment implementation, and post-deployment management and monitoring, the key factors that medical institutions should consider when introducing DeepSeek were elaborated in detail, including medical demand compatibility, technical capabilities and infrastructure, legal and ethical risks, data preparation and management, model selection and optimization, system integration and training, performance monitoring and continuous optimization, risk management and emergency response, as well as compliance review and evaluation. This provides a comprehensive deployment framework for medical institutions to ensure the safety and effectiveness of technology applications.
5.Current status of cognition and skin care behavior in adolescent patients with acne: A survey in China.
Jing TIAN ; Hong SHU ; Qiufang QIAN ; Zhong SHEN ; Chunyu ZHAO ; Li SONG ; Ping LI ; Xiuping HAN ; Hua QIAN ; Jinping CHEN ; Hua WANG ; Lin MA ; Yuan LIANG
Chinese Medical Journal 2024;137(4):476-477
6.Network pharmacology and subsequent experimental validation reveal the synergistic myocardial protection mechanism of Salvia miltiorrhiza Bge. and Carthamus tinctorius L.
Linying Zhong ; Ling Dong ; Jing Sun ; Jie Yang ; Zhiying Yu ; Ping He ; Bo Zhu ; Yuxin Zhu ; Siyuan Li ; Wenjuan Xu
Journal of Traditional Chinese Medical Sciences 2024;11(1):44-54
Objective:
To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge (S. miltiorrhiza, Dan Shen) and C. tinctorius L. (C. tinctorius, Hong Hua) as an herb pair through network pharmacology and subsequent experimental validation.
Methods:
Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of S. miltiorrhiza and C. tinctorius as herb pair. Molecular docking was used to verify the binding of the components of these herbs and their potential targets. An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects, which were evaluated using the combination index. Western blot was performed to detect the protein expression of these targets.
Results:
Network pharmacology analysis revealed 5 pathways and 8 core targets of S. miltiorrhiza and C. tinctorius in myocardial protection. Five of the core targets were enriched in the hypoxia-inducible factor-1 (HIF-1) signaling pathway. S. miltiorrhiza-C. tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway. As an upstream gene of the HIF-1 pathway, STAT3 can be activated by the active ingredients cryptotanshinone (Ctan), salvianolic acid B (Sal. B), and myricetin (Myric). Cell experiments revealed that Myric, Sal. B, and Ctan also exhibited synergistic myocardial protective activity. Molecular docking verified the strong binding of Myric, Sal. B, and Ctan to STAT3. Western blot further showed that the active ingredients synergistically upregulated the protein expression of STAT3.
Conclusion
The pharmacodynamic transmission analysis revealed that the active ingredients of S. miltiorrhiza and C. tinctorius can synergistically resist ischemia through various targets and pathways. This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.
7.Biomechanopharmacological Study of Panax notoginseng Saponins on High Shear-induced Platelet Aggregation and Thrombosis
Yilin WANG ; Jia LI ; Lu LIU ; Ping GONG ; Jing XU ; Fulong LIAO ; Yun YOU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):111-120
ObjectiveTo investigate the mechanisms of Panax notoginseng saponins (PNS) in inhibiting high shear-induced platelet aggregation and thrombosis via the Piezo1-mediated calcium signaling pathway. MethodBioflux1000z was used for the microfluidic assay, where platelets were stimulated with physiological shear rate (500 s-1), pathological shear rate (12 000 s-1), or Piezo1 agonist Yoda1 under the physiological shear rate (500 s-1). The shear-induced platelet calcium influx and the binding of platelet with von Willebrand factor (vWF) were measured by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the vWF release from platelets. The microfluidic channels were used to determine the vWF-mediated platelet aggregation and integrin αⅡbβ3 activation. A mouse model of arterial thrombosis induced by high shear stress combined with endothelial injury was established. The ultrasonic Doppler flow meter was used to monitor the cyclic flow reduction (CFR) caused by the repeated formation and shedding of thrombi, and flow cytometry was employed to examine platelet-vWF binding, on the basis of which the effect of PNS on high shear-induced arterial thrombosis was evaluated. ResultThe microfluidic assay showed that PNS decreased the high shear rate (12 000 s-1) or Yoda1-induced calcium influx, platelet-vWF binding, vWF-mediated platelet-fibrinogen binding, and vWF release from platelet alpha-granules in a dose-dependent manner. In the mouse model of high shear-induced thrombosis, PNS markedly reduced the CFR and occlusion time of the common carotid artery and inhibited platelet-vWF binding. ConclusionPNS can mitigate pathological shear-induced platelet aggregation and arterial thrombosis via influencing Piezo1/GPIbα-vWF signaling.
8.Advances in DNA origami intelligent drug delivery systems
Zeng-lin YIN ; Xi-wei WANG ; Jin-jing CHE ; Nan LIU ; Hui ZHANG ; Zeng-ming WANG ; Jian-chun LI ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(10):2741-2750
DNA origami is a powerful technique for generating nanostructures with dynamic properties and intelligent controllability. The precise geometric shapes, high programmability, and excellent biocompatibility make DNA origami nanostructures an emerging drug delivery vehicle. The shape, size of the carrier material, as well as the loading and release of drugs are important factors affecting the bioavailability of drugs. This paper focuses on the controllable design of DNA origami nanostructures, efficient drug loading, and intelligent drug release. It summarizes the cutting-edge applications of DNA origami technology in biomedicine, and discusses areas where researchers can contribute to further advancing the clinical application of DNA origami carriers.
9.Preliminary exploration of the pharmacological effects and mechanisms of icaritin in regulating macrophage polarization for the treatment of intrahepatic cholangiocarcinoma
Jing-wen WANG ; Zhen LI ; Xiu-qin HUANG ; Zi-jing XU ; Jia-hao GENG ; Yan-yu XU ; Tian-yi LIANG ; Xiao-yan ZHAN ; Li-ping KANG ; Jia-bo WANG ; Xin-hua SONG
Acta Pharmaceutica Sinica 2024;59(8):2227-2236
The incidence of intrahepatic cholangiocarcinoma (ICC) continues to rise, and there are no effective drugs to treat it. The immune microenvironment plays an important role in the development of ICC and is currently a research hotspot. Icaritin (ICA) is an innovative traditional Chinese medicine for the treatment of advanced hepatocellular carcinoma. It is considered to have potential immunoregulatory and anti-tumor effects, which is potentially consistent with the understanding of "Fuzheng" in the treatment of tumor in traditional Chinese medicine. However, whether ICA can be used to treat ICC has not been reported. Therefore, in this study, sgp19/kRas, an
10.Effects of 60Co-γ radiation on the structure and anti-inflammatory activity of nialamide
Peng YAN ; Jing HOU ; Ping LI ; Ruirui CHEN ; Yan LI
Chinese Journal of Radiological Health 2024;33(5):491-498
Objective To study the effect of cobalt-60 gamma-ray (60Co-γ) radiation on the structure of Nialamide, compare the anti-inflammatory activity of irradiation products, and explore the mechanism of action. Methods After 60Co-γ irradiation of nialamide at a dose of 50 kGy, five known compounds were obtained (2-6). The viability of RAW 264.7 (mouse mononuclear macrophage leukemia) cells treated with these compounds was determined by CCK-8 assay. The secretion of interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2) and the content of nitric oxide (NO) were measured using enzyme-linked immunosorbent assay and Griess method. The production of reactive oxygen species (ROS) was detected using DCFH-DA fluorescent probe. The expression levels of cell-induced nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear transcription factor-κB (NF-κB), and IκB were detected using Western blot. Results The products of nialamide after irradiation did not significantly affect RAW264.7 cell viability (P > 0.05) but showed a strong anti-inflammatory effect (P < 0.01). Compared with nialamide, compounds 2, 3, 4, 6 significantly reduced NO content in LPS-induced RAW 264.7 cells (P < 0.01), and compound 4 had the most significant effect. Moreover, compound 4 significantly reduced the content of IL-6, TNF-α, PGE2, and ROS (P < 0.05) as well as the expression of iNOS, COX-2, NF-κB, and IκB (P < 0.05) in LPS-induced RAW 264.7 cells. Conclusion The chemical structure of nialamide is changed after irradiation with 60Co-γ, and its product compound 4 shows strong anti-inflammatory activity, which may be related to inhibiting the activation of NF-κB signaling pathway and reducing the release of inflammatory factors. Radiation technology can provide new insights into the changes of molecular structures and physiological properties of natural products.


Result Analysis
Print
Save
E-mail