1.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
Hui-Lin XU ; Huan-Jun XI ; Tao DUAN ; Jing LI ; Dan-Dan LI ; Kai WANG ; Chun-Yan ZHU
Progress in Biochemistry and Biophysics 2025;52(1):223-232
ObjectiveAutism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interaction, restricted and repetitive behaviors. Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits, which are closely related to the core symptoms of ASD. Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities. Therefore, this study explores the behavior of children with ASD in capturing attention to changes in topological properties. MethodsOur study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing (TD) age-matched controls. In an attention capture task, we recorded the saccadic behaviors of children with ASD and TD in response to topological change (TC) and non-topological change (nTC) stimuli. Saccadic reaction time (SRT), visual search time (VS), and first fixation dwell time (FFDT) were used as indicators of attentional bias. Pearson correlation tests between the clinical assessment scales and attentional bias were conducted. ResultsThis study found that TD children had significantly faster SRT (P<0.05) and VS (P<0.05) for the TC stimuli compared to the nTC stimuli, while the children with ASD did not exhibit significant differences in either measure (P>0.05). Additionally, ASD children demonstrated significantly less attention towards the TC targets (measured by FFDT), in comparison to TD children (P<0.05). Furthermore, ASD children exhibited a significant negative linear correlation between their attentional bias (measured by VS) and their scores on the compulsive subscale (P<0.05). ConclusionThe results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection. This atypical attention may affect the child’s cognitive and behavioral development, thereby impacting their social communication and interaction. In sum, our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
7.Preliminary study of the value of ultrasound parameters combined with cystatin C in monitoring early acute kidney injury after liver transplantation
Di ZHANG ; Jing SUN ; Kai ZHAO ; Chuanshen XU ; Shiwen DING ; Jinzhen CAI ; Jianhong WANG
Organ Transplantation 2025;16(4):574-581
Objective To explore the value of combined ultrasound parameters, including the hepatorenal index (HRI) and renal resistance index (RRI), with cystatin C (CysC) in monitoring early acute kidney injury (AKI) after liver transplantation. Methods Perioperative data from 121 liver transplant recipients who received organs from donation after brain death were collected. The HRI and RRI of the recipients were measured on postoperative days 1-7 and at 1 month, and the CysC levels were measured on postoperative day 1. The recipients were divided into the AKI group (n=53) and the non-AKI group (n=68) based on whether AKI occurred within 7 days after operation. The data of the two groups were compared, and the ultrasound parameters before and after recovery in the AKI group were analyzed. The value of combined HRI, RRI and CysC in monitoring AKI was also analyzed. Results AKI occurred in 53 recipients, with an incidence rate of 43.8%, including 30 cases of stage 1, 18 cases of stage 2, and 5 cases of stage 3. Among them, 49 cases occurred on postoperative day 1, and 4 cases occurred on postoperative day 2. Of these, 43 cases recovered within 7 days after surgery, 8 cases recovered within 2 months after surgery, 1 case was lost to follow-up, and 1 case received renal replacement therapy. The body mass index and preoperative CysC levels were higher in the AKI group than in the non-AKI group, and the operative time was longer in the AKI group than in the non-AKI group (all P < 0.05). The HRI on postoperative day 1 was lower in the AKI group than in the non-AKI group, while the RRI and CysC levels were higher (all P < 0.05). When AKI occurred, the HRI was lower than the baseline level, and the RRI was higher than the baseline level. As AKI recovered, the HRI gradually increased, and the RRI gradually decreased. The receiver operating characteristic curve analysis showed that the sensitivity and specificity of HRI ≤ 1.12 for predicting AKI were 0.623 and 0.878, respectively, with an area under the curve (AUC) of 0.801. The sensitivity and specificity of RRI ≥ 0.65 for predicting AKI were 0.878 and 0.676, respectively, with an AUC of 0.825. The sensitivity and specificity of CysC ≥ 1.38 mg/L for predicting AKI were 0.736 and 0.882, respectively, with an AUC of 0.851 (all P<0.01). The combination of HRI and CysC (AUC=0.897, P<0.01), RRI and CysC (AUC=0.910, P<0.01), and all three parameters combined (AUC=0.934, P<0.01) were more effective than using each parameter alone. Conclusions HRI and RRI may be used to monitor the occurrence and recovery of early AKI after liver transplantation. The combination of these two parameters with CysC has a high application value in monitoring early AKI after liver transplantation.
8.Efficacy of alpha-lipoic acid in patients with ischemic heart failure: a randomized, double-blind, placebo-controlled study
Hanchuan CHEN ; Qin YU ; Yamei XU ; Chen LIU ; Jing SUN ; Jingjing ZHAO ; Wenjia LI ; Kai HU ; Junbo GE ; Aijun SUN
Chinese Journal of Clinical Medicine 2025;32(4):717-719
Objective To explore the safety and effects of alpha-lipoic acid (ALA) in patients with ischemic heart failure (IHF). Methods A randomized, double-blind, placebo-controlled trial was designed (ClinicalTrial.gov registration number NCT03491969). From January 2019 to January 2023, 300 patients with IHF were enrolled in four medical centers in China, and were randomly assigned at a 1∶1 ratio to receive ALA (600 mg daily) or placebo on top of standard care for 24 months. The primary outcome was the composite outcome of hospitalization for heart failure (HF) or all-cause mortality events. The second outcome included non-fatal myocardial infarction (MI), non-fatal stroke, changes of left ventricular ejection fraction (LVEF) and 6-minute walking distance (6MWD) from baseline to 24 months after randomization. Results Finally, 138 patients of the ALA group and 139 patients of the placebo group attained the primary outcome. Hospitalization for HF or all-cause mortality events occurred in 32 patients (23.2%) of the ALA group and in 40 patients (28.8%) of the placebo group (HR=0.753, 95%CI 0.473-1.198, P=0.231; Figure 1A-1C). The absolute risk reduction (ARR) was 5.6%, the relative risk reduction (RRR) associated with ALA therapy was approximately 19.4% compared to placebo, corresponding to a number needed to treat (NNT) of 18 patients to prevent one event. In the secondary outcome analysis, the composite outcome of the major adverse cardiovascular events (MACE) including the hospitalization for HF, all-cause mortality events, non-fatal MI or non-fatal stroke occurred in 35 patients (25.4%) in the ALA group and 47 patients (33.8%) in the placebo group (HR=0.685, 95%CI 0.442-1.062, P=0.091; Figure 1D). Moreover, greater improvement in LVEF (β=3.20, 95%CI 1.14-5.23, P=0.002) and 6MWD (β=31.7, 95%CI 8.3-54.7, P=0.008) from baseline to 24 months after randomization were observed in the ALA group as compared to the placebo group. There were no differences in adverse events between the study groups. Conclusions These results show potential long-term beneficial effects of adding ALA to IHF patients. ALA could significantly improve LVEF and 6MWD compared to the placebo group in IHF patients.
9.Association between coronary artery stenosis and myocardial injury in patients with acute pulmonary embolism: A case-control study
Yinjian YANG ; Chao LIU ; Jieling MA ; Xijie ZHU ; Jingsi MA ; Dan LU ; Xinxin YAN ; Xuan GAO ; Jia WANG ; Liting WANG ; Sijin ZHANG ; Xianmei LI ; Bingxiang WU ; Kai SUN ; Yimin MAO ; Xiqi XU ; Tianyu LIAN ; Chunyan CHENG ; Zhicheng JING
Chinese Medical Journal 2024;137(16):1965-1972
Background::The potential impact of pre-existing coronary artery stenosis (CAS) on acute pulmonary embolism (PE) episodes remains underexplored. This study aimed to investigate the association between pre-existing CAS and the elevation of high-sensitivity cardiac troponin I (hs-cTnI) levels in patients with PE.Methods::In this multicenter, prospective case-control study, 88 cases and 163 controls matched for age, sex, and study center were enrolled. Cases were patients with PE with elevated hs-cTnI. Controls were patients with PE with normal hs-cTnI. Coronary artery assessment utilized coronary computed tomographic angiography or invasive coronary angiography. CAS was defined as ≥50% stenosis of the lumen diameter in any coronary vessel >2.0 mm in diameter. Conditional logistic regression was used to evaluate the association between CAS and hs-cTnI elevation.Results::The percentage of CAS was higher in the case group compared to the control group (44.3% [39/88] vs. 30.1% [49/163]; P = 0.024). In multivariable conditional logistic regression model 1, CAS (adjusted odds ratio [OR], 2.680; 95% confidence interval [CI], 1.243–5.779), heart rate >75 beats/min (OR, 2.306; 95% CI, 1.056–5.036) and N-terminal pro-B type natriuretic peptide (NT-proBNP) >420 pg/mL (OR, 12.169; 95% CI, 4.792–30.900) were independently associated with elevated hs-cTnI. In model 2, right CAS (OR, 3.615; 95% CI, 1.467–8.909) and NT-proBNP >420 pg/mL (OR, 13.890; 95% CI, 5.288–36.484) were independently associated with elevated hs-cTnI. Conclusions::CAS was independently associated with myocardial injury in patients with PE. Vigilance towards CAS is warranted in patients with PE with elevated cardiac troponin levels.
10.Research progress of"suicide left ventricle"after transcatheter aortic valve replacement
Xue GAO ; Kai-Jing YANG ; Si-Xu LIU ; Shu-Ying ZHANG ; Sheng-Qin YU
Chinese Journal of Interventional Cardiology 2024;32(5):266-270
Transcatheter aortic valve replacement(TAVR)is the use of interventional catheter to transport the artificial heart valve to the aortic valve area through the patient's arterial,venous system or left ventricular apex,then release it to replace the original aortic valve to achieve normal physiological function.The"suicide left ventricle"phenomenon refers to the paradoxical hemodynamic collapse of dynamic left ventricular obstruction caused by left ventricular hypertrophy and hypersystole after the removal of the fixed valve obstruction of aortic stenosis after TAVR.The clinical manifestation is abnormal continuous hypotension that is ineffective to positive inotropic drugs during the operation or within a few hours after the operation.With the indications for transcatheter aortic valve surgery covering patients with low,medium and high risk of severe aortic stenosis,surgery-related complications have been reported to increase gradually."Suicide left ventricle"is worth studying and exploring as a fatal potential complication.This article mainly reviews four aspects of the overview of"suicide left ventricle",pathological mechanism,risk-related indicators,prevention strategies and treatment methods to be highly vigilant and make corresponding emergency plans for patients with aortic stenosis who may have suicide left ventricle risk,so as to minimize perioperative mortality.

Result Analysis
Print
Save
E-mail