1.Effects of Moxibustion at "Guanyuan (CV 4)" on Oxidative Stress and Autophagy-Related Gene Expression of Skin Tissue in Photoaging Model Rats
Qianqian HUI ; Yuan JING ; Sijie OUYANG ; Shijing YOU ; Boying TONG
Journal of Traditional Chinese Medicine 2025;66(6):621-628
ObjectiveTo explore the potential mechanism of moxibustion at Guanyuan (CV 4) in delaying skin photoaging. MethodsThirty-two male Wistar rats were randomly divided into four groups, namely blank group, model group, vitamin E group, and moxibustion group, with 8 rats in each group. Except for the blank group, dorsal skin of rats were exposed to ultraviolet (UV) radiation to establish a skin photoaging model. One week after modeling, the moxibustion group received moxibustion at "Guanyuan (CV 4)" once a day, five days per week; the vitamin E group received vitamin E (25 mg/kg·d) once a day by gavage, five days per week; the blank group, model group, and moxibustion group received an equivalent volume of normal saline via gavage; the intervention lasted for 7 weeks. After 7 weeks, dorsal skin tissues were collected to analyze the following indicators, such as skin tissue moisture content, histomorphological changes using hematoxylin-eosin (HE) staining, Collagen Ⅰ and collagen Ⅲ content using ELISA. Malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), hydrogen peroxide (H2O2), and catalase (CAT) activity in skin tissue were dectected. Western Blot was used to determin autophagy-related proteins, including microtubule-associated protein 1A/1B-light chain 3 (LC3), polyubiquitin-binding protein (p62), and autophagy-specific gene (Beclin-1); LC3, p62, and Beclin-1 mRNA expression was detected via qRT-PCR, and autophagosome formation was observed using transmission electron microscopy (TEM). ResultsHE staining showed that the epidermal structure in the blank group was orderly and evenly thick, while the model group exhibited uneven epidermal thickness. In the moxibustion group, the epidermis was well-structured, smooth, and uniform, with densely arranged dermal layers; the epidermis in the vitamin E group was thicker than that in the model group. Compared with the blank group, the model group exhibited decreased skin moisture content and reduced level of Collagen Ⅰ and collagen Ⅲ, reduced SOD, CAT, and GSH-Px activity in skin tissue, increased H2O2 and MDA activity, elevated p62 protein and mRNA expression, reduced LC3 and Beclin-1 protein and mRNA expression (P<0.05 or P<0.01). Compared with the model group, the moxibustion group showed significant improvement in all these indicators (P<0.05 or P<0.01); whereas the vitamin E group did not show a statistically significant difference in Collagen Ⅰ and collagen Ⅲ levels (P>0.05). TEM results showed that, compared with the blank group, the model group had atrophic skin cells, extensive mitochondrial vacuolization, and degraded cellular structures; the moxibustion group exhibited crescent- or cup-shaped autophagosomes with a significantly increased number of autophagosomes per unit area, whereas the vitamin E group showed less improvement than the moxibustion group. ConclusionMoxibustion at "Guanyuan (CV 4)" may alleviate skin photoaging by regulating oxidative stress imba-lance, modulating cellular autophagy, and promoting collagen synthesis, thereby slowing the aging process of the skin.
2.Advancement of corneal cross-linking therapy in non-expanding corneal lesions
International Eye Science 2025;25(4):573-576
In recent years, with the development of corneal cross-linking technology, corneal cross-linking therapy combined with adopting riboflavin and ultraviolet has been widely used in several corneal disorders, not only for keratoconus, but also for other corneal diseases, including infectious keratitis,chemical corneal injury, bullous keratopathy, and refractive surgery. Corneal cross-linking is a non-invasive procedure with the virtue of minor damage, rapid rehabilitation, convenient operation, and high safety. This review aims to investigate the mechanism of corneal cross-linking therapy, emphasizing the new progress of its efficacy and safety in the application of treating non-expanding corneal diseases, including infectious keratitis, chemical burns, bullous keratopathy and marginal degeneration. Corneal cross-linking therapy may be potentially helpful in the treatment of non-expanding corneal diseases.
3.Exploring mechanism of Porana racemosa Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
Through network pharmacology and molecular docking technology, combined with
4.Application of Model for End-Stage Liver Disease score in end-stage liver disease
Rigan XIGU ; Ya SU ; Jing TONG ; Bingyuan WANG
Journal of Clinical Hepatology 2025;41(3):556-560
The Model for End-Stage Liver Disease (MELD) score is currently used to prioritize liver allocation for cirrhotic patients awaiting liver transplantation in the world. With the application of MELD score in transplantation for patients with severe conditions, several models have been proposed to refine and improve MELD score. MELD score has also been used for the management of non-transplantation patients with chronic liver disease. This article briefly reviews the background of these models and believes that the original intention of MELD is to determine the priority of organ allocation for liver transplantation. The expanded application of MELD score beyond liver transplantation assessment should be performed with reference to clinical practice, and different MELD models should be selected rationally based on individual conditions, in order to help patients achieve optimal prognosis assessment, intervention measures, and benefits.
5.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
6.Strategic thinking on management of cross-boundary imported schistosomiasis
Jing XU ; Shizhen LI ; Qin LI ; Suying GUO ; Shizhu LI ; Xiaonong ZHOU
Chinese Journal of Schistosomiasis Control 2025;37(2):107-111
Schistosomiasis is prevalent in 78 countries and territories worldwide, while the eastern and western parts of sub-Sahara Africa bear the highest disease burden due to schistosomiasis. Recently, climate change, international trade and travel, urbanization and war have increased the risk of cross-boundary importation and transmission of schistosomiasis, and schistosomiasis has increasingly become a public health concern in non-endemic countries and territories. Biomphalaria straminea, the intermediate host of Schistosoma mansoni, has colonized in southern China and its habitats continue to move northward. In addition, cross-boundary imported cases of schistosomiasis have been reported occasionally in China. However, the real number of cases may be underestimated greatly due to insufficient diagnostic capacity and weak awareness of case reporting for overseas imported schistosomiasis in healthcare facilities. It is necessary to establish a multi-party collaborative mechanism, improve corresponding systems and technical specifications, reinforce surveillance and early warning, and border management, enhance technical reserves and capability building, and improve the awareness of schistosomiasis prevention and healthcare-seeking among entry-exit personnel, in order to effectively address the threat of cross-boundary imported schistosomiasis.
7.Sequencing and analysis of the complete mitochondrial genome of Bulinus globosus
Peijun QIAN ; Mutsaka-Makuvaza MASCELINE JENIPHER ; Chao LÜ ; Yingjun QIAN ; Wenya WANG ; Shenglin CHEN ; Andong XU ; Jingbo XUE ; Jing XU ; Xiaonong ZHOU ; Midzi NICHOLAS ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2025;37(2):116-126
Objective To analyze the structural and phylogenetic characteristics of the mitochondrial genome from Bulinus globosus, so as to provide a theoretical basis for classification and identification of species within the Bulinus genus, and to provide insights into understanding of Bulinus-schistosomes interactions and the mechanisms of parasite transmission. Methods B. globosus samples were collected from the Ruya River basin in Zimbabwe. Mitochondrial DNA was extracted from B. globosus samples and the corresponding libraries were constructed for high-throughput sequencing on the Illumina NovaSeq 6000 platform. After raw sequencing data were subjected to quality control using the fastp software, genome assembly was performed using the A5-miseq and SPAdes tools, and genome annotation was conducted using the MITOS online server. Circular maps and sequence plots of the mitochondrial genome were generated using the CGView and OGDRAW software, and the protein conservation motifs and structures were analyzed using the TBtools software. Base composition and codon usage bias were analyzed and visualized using the software MEGA X and the ggplot2 package in the R software. In addition, a phylogenetic tree was created in the software MEGA X after sequence alignment with the software MAFFT 7, and visualized using the software iTOL. Results The mitochondrial genome of B. globosus was a 13 730 bp double-stranded circular molecule, containing 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and 13 protein-coding genes, with a marked AT preference. The mitochondrial genome composition of B. globosus was similar to that of other species within the Bulinus genus. Phylogenetic analysis revealed that the complete mitochondrial genome sequence of B. globosus was clustered with B. truncatus, B. nasutus, and B. ugandae into the same evolutionary clade, and gene superfamily analysis showed that the metabolism-related proteins of B. globosus were highly conserved, notably the cytochrome c oxidase family, which showed a significant consistency. Conclusions This is the first whole mitochondrial genome sequencing to decode the compositional features of the mitochondrial genome of B. globosus from Zimbabwe and its evolutionary relationship within the Bulinus genus, which provides important insights for further understanding of the phylogeny and mitochondrial genome characteristics of the Bulinus genus.
8.Mechanism of immediate administration of Angong Niuhuang Pills in intervention of traumatic brain injury based on metabolomics and transcriptomics.
Xiao-Tong ZHU ; Liang-Liang TIAN ; Jing-Jing ZHANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2025;50(10):2750-2760
This study integrates metabolomics and transcriptomics to explore the immediate effects of Angong Niuhuang Pills(ANP) in intervening traumatic brain injury(TBI) in rats. A TBI model was successfully established in rats using the optimized Feeney free-fall impact technique. Rats were randomly divided into sham operation(sham) group, model(Mod) group, positive drug(piracetam) group, ANP low-dose(ANP-L) group, and ANP high-dose(ANP-H) group according to a random number table. Nissl staining and immunofluorescence were used to count the number of Nissl bodies and detect B-cell lymphoma-2(Bcl-2) gene, caspase-3, and tumor protein 53(TP53) expression in brain tissue, and enzyme-linked immunosorbent assay(ELISA) was used to measure prostaglandin-endoperoxide synthase 2(PTGS2) level in rat brain tissue. Metabolomics and transcriptomics analyses were conducted for brain tissue from sham, Mod, and ANP-H groups. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out to indicate the mechanisms of ANP in the intervention of TBI. Integrative metabolomics and transcriptomics analysis revealed the metabolic pathways involved in ANP's intervention in TBI. The results showed that ANP significantly increased the number of Nissl bodies in TBI rat brain tissue, upregulated Bcl-2 expression, and downregulated the levels of caspase-3, TP53, and PTGS2. Compared to the Mod group, the ANP-H group significantly upregulated 12 differential metabolites(DMs) and downregulated 25 DMs. Five key metabolic pathways were identified, including glycerophospholipid metabolism, pyrimidine metabolism, glycine, threonine, and serine metabolism, arginine and proline metabolism, and D-amino acid metabolism. Transcriptomics identified 730 upregulated and 612 downregulated differentially expressed genes(DEGs). Enrichment analysis highlighted that biological functions related to inflammatory responses and apoptotic processes, and key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and mitogen-activated protein kinase(MAPK) were significantly enriched. The data of transcriptomics and metabolomics pinpointed three key metabolic pathways, i.e., glycerophospholipid metabolism, pyrimidine metabolism, and glycine, threonine, and serine metabolism.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Brain Injuries, Traumatic/metabolism*
;
Male
;
Metabolomics
;
Rats, Sprague-Dawley
;
Transcriptome/drug effects*
;
Cyclooxygenase 2/genetics*
;
Brain/metabolism*
;
Caspase 3/genetics*
;
Humans
;
Tumor Suppressor Protein p53/genetics*
9.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family
10.Research progress in chemical components and pharmacological activities of different medicinal parts of Citrus changshan-huyou.
Meng-Yao SHI ; Bing-Jing XU ; Kang-Yu ZHOU ; Chao-Ying TONG ; Dan SHOU
China Journal of Chinese Materia Medica 2025;50(16):4490-4509
As a member of the Citrus genus of the Rutaceae family, Citrus changshan-huyou(CSHY) is mainly produced in Quzhou city, Zhejiang province. Modern research shows that different medicinal parts of CSHY(immature fruit, mature fruit peel, flower buds, leaves, seeds, etc.) are abundant in flavonoids, terpenes, coumarins, phenolic acids, and volatile oils. Their pharmacological activities include respiratory system protection, liver protection, anti-inflammation, anti-hyperlipidemia, anti-hyperglycemia, and antioxidation. Based on the summarization of 374 chemical components in different medicinal parts of CSHY identified in the past 20 years, this study reviewed their pharmacological actions and mechanisms and further analyzed the current status of quality control of different medicinal parts of CSHY, aiming to provide reference for the resource development and exploitation and the quality control research of different medicinal parts of CSHY.
Citrus/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Plants, Medicinal/chemistry*
;
Quality Control
;
Animals

Result Analysis
Print
Save
E-mail