1.Protective Effect and Mechanism of Anmeidan against Neuronal Damage in Rat Model of Sleep Deprivation Based on Hippocampal Neuroinflammation
Guangjing XIE ; Zixuan XU ; Junlu ZHANG ; Jian ZHANG ; Jing XIA ; Bo XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):65-71
ObjectiveTo investigate the effects of Anmeidan (AMD) on neuroinflammation in the hippocampus of sleep-deprived rats. MethodsSD rats were randomly divided into four groups (n = 10 per group): control group, model group, AMD group, and melatonin group. A sleep deprivation model was established using the modified multiple platform water environment method. The AMD group received AMD at a dose of 18.18 g·kg-1·d-1, the melatonin group received melatonin at 100 mg·kg-1·d-1, and the control and model groups were given an equal volume of pure water. All treatments were administered by gavage for four weeks. Spontaneous activity was assessed using an animal behavior video system. Serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay (ELISA). Hippocampal pyramidal neuron morphology was examined using hematoxylin-eosin (HE) staining, and ultrastructural changes of hippocampal neurons were observed via transmission electron microscopy. Immunofluorescence was used to detect the expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus. Western blot analysis was performed to measure the expression of nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), NOD-like receptor protein 3 (NLRP3), and Caspase-1 proteins. ResultsCompared with the control group, the model group showed a significant increase in activity duration and frequency (P<0.01), increased hippocampal pyramidal cell structural damage and decreased cell count, aggravated hippocampal ultrastructural damage, mitochondrial cristae disruption, and exacerbated vacuolization. The expression of p-NF-κB p65, NLRP3, and Caspase-1 proteins was upregulated, serum IL-1β, IL-6, and TNF-α levels were significantly elevated (P<0.01), and the fluorescence intensity of BDNF and NGF proteins was significantly reduced (P<0.01). Compared with the model group, the AMD group showed a significant reduction in activity duration and frequency (P<0.01), increased hippocampal pyramidal cell count with reduced structural damage, alleviated hippocampal ultrastructural damage, significantly downregulated p-NF-κB p65, NLRP3, and Caspase-1 protein expression (P<0.01), decreased serum IL-1β, IL-6, and TNF-α levels (P<0.01), and significantly increased the fluorescence intensity of BDNF and NGF proteins (P<0.01). ConclusionAnmeidan alleviates hippocampal neuronal damage in sleep-deprived rats, potentially by downregulating the NLRP3 signaling pathway, reducing inflammatory cytokine release, and increasing neurotrophic factor levels.
2.Management status and influencing factors of disease stabilization in patients with severe mental disorders in Luzhou City, Sichuan Province
Xuemei ZHANG ; Bo LI ; Benjing CAI ; Youguo TAN ; Bo XIANG ; Jing HE ; Qidong JIANG ; Jian TANG
Sichuan Mental Health 2025;38(2):131-137
BackgroundSevere mental disorders represent a major public health concern due to the high disability rates and substantial disease burden, which has garnered significant national attention and prompted their inclusion in public health project management systems. However, credible evidence regarding the current status of disease management and factors influencing disease stabilization among patients with severe mental disorders in Luzhou City, Sichuan Province, remains limited. ObjectiveTo investigate the current management status of patients with severe mental disorders in Luzhou City, Sichuan Province, and to analyze influencing factors of disease stabilization among patients under standardized care, so as to provide evidence-based insights for developing targeted management strategies to optimize clinical interventions for this patient population. MethodsIn March 2023, data were extracted from the Sichuan Mental Health Service Comprehensive Management Platform for patients with severe mental disorders in Luzhou City who received management between December 2017 and December 2022. Information on mental health service utilization and clinical status changes was collected. Trend analysis was conducted to evaluate temporal changes in key management indicators for severe mental disorders in Luzhou City. Logistic regression analysis was employed to identify factors influencing the disease stabilization or fluctuation of these patients. ResultsThis study enrolled a total of 20 232 patients. In Luzhou City, the stabilization rate and standardized management rate of severe mental disorders were 94.89% and 79.36% in 2017, respectively, which increased to 95.33% and 96.92% by 2022. The regular medication adherence rate rose from 34.42% in 2018 to 86.81% in 2022. In 2022, the regular medication adherence rate was 71.80% for schizophrenia, 55.26% for paranoid psychosis, and 51.43% for schizoaffective disorder. Multivariate analysis identified the following protective factors for disease stabilization: age of 18~39 years (OR=0.613, 95% CI: 0.409~0.918), age of 40~65 years (OR=0.615, 95% CI: 0.407~0.931), urban residence (OR=0.587, 95% CI: 0.478~0.720), and regular medication adherence (OR=0.826, 95% CI: 0.702~0.973). Risk factors for disease fluctuation included poor (OR=1.712, 95% CI: 1.436~2.040), non-inclusion in care-support programs (OR=1.928, 95% CI: 1.694~2.193), non-participation in community rehabilitation (OR=2.255, 95% CI: 1.930~2.634), and intermittent medication adherence (OR=3.893, 95% CI: 2.548~5.946). ConclusionThe stability rate, standardized management rate, and regular medication adherence rate of patients with severe mental disorders in Luzhou City have shown a year-by-year increase. Age, household registration status, economic condition, medication compliance, and community-based rehabilitation were identified as influencing factors for disease fluctuation in these patients. [Funded by Luzhou Science and Technology Plan Project (number, 2022-ZRK-186)]
3.The Application Status and Trends of Data-Intelligence Technology in the Diagnosis of Lysosomal Storage Diseases
Xinyu DU ; Shengfeng WANG ; Jing XIE ; Jian GUO ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(1):112-121
To summarize the applications of data-intelligence technology in diagnosing lysosomal storage disease(LSD), analyze their opportunities and challenges in clinical practice as well as their development trends, and provide insights and recommendations for advancing digitally driven auxiliary diagnostic technologies. A comprehensive literature search was conducted across databases including PubMed, Web of Science, Embase, CNKI, Wanfang Database, and VIP. The studies focusing on the application of digital-intelligence technologies in LSD diagnosis were included. A qualitative analysis was performed, categorizing and summarizing research based on the types of digital-intelligence technologies employed, and exploring future development trends. The analysis revealed that digital-intelligence technologies, particularly in areas such as big data storage and management, data mining and analytics, machine learning, natural language processing, and computer vision, held significant potential for early screening and diagnosis of LSD. These technologies facilitated the identification of potential patients, discovery of new biomarkers, quantitative analysis of symptoms, and elucidation of gene-disease relationships, ultimately enhancing diagnostic efficiency and accuracy. Digital-intelli-gence technologies present promising prospects for advancing LSD diagnostic research and improving diagnostic precision. Future efforts should focus on developing a comprehensive, multidimensional diagnosis system and diagnostic technologies under the guidance of the DI-HEALTH theoretical framework, in the hope of paving the way for further development of digitally assisted diagnostic solutions.
4.Current Research Status of Digital Technology in the Rehabilitation of Rare Neurological and Muscular Diseases
Yixuan GUO ; Yi GAO ; Yiyang YAO ; Zhuoyue QIN ; Yaofang ZHANG ; Jiaqi JING ; Jing XIE ; Jian GUO ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(1):122-131
To review the randomized controlled trials (RCTs) at home and abroad on digital intelligence (DI)-driven rehabilitation in patients of neuromuscular disease, compare the effects of DI-driven rehabilitation with traditional rehabilitation, summarize the special needs and challenges faced by patients in rehabilitation of rare neuromuscular diseases, and provide evidence for the development and quality improvement of rehabilitation for rare neuromuscular diseases. We searched PubMed, Web of Science, Embase, CNKI, VIP, and Wanfang databases for literature on neuromuscular diseases, rare diseases, digital and intelligent technologies, and rehabilitation published from the inception of the databases to June 2024. Basic and research-related information from the retrieved literature was extracted and analyzed. A total of 43 RCTs in English from 14 countries were included. The most studied diseases were Parkinson′s disease and multiple sclerosis. The application of DI-driven technologies in rehabilitation of rare neuromuscular diseases was still limited. The commonly used technologies were virtual reality (VR) games, intelligent treadmill assistance, gait training robots, hybrid assistive limb (HAL), wearable sensors and tele-rehabilitation (TR) systems. These technologies were applied in patients′ homes or rehabilitation service centers. The VR games significantly improved both static/dynamic balance functions and cognitive functions. The intelligent treadmill assistance significantly enhanced gait speed and stride length. The gait training robots significantly improved balance, gait speed and stride length of patients. The wearable exoskeletons significantly enhanced walking ability. DI-driven rehabilitation measures have great value and potential in the field of neuromuscular disease rehabilitation. Their advantages and characteristics can meet the diverse needs of rare disease patients. In the future, a hierarchical and collaborative rehabilitation service system should be established to meet the urgent needs of the rehabilitation of rare neuromuscular diseases. Combining the advantages of digitization and intelligence will provide standardized, scientific, convenient and affordable rehabilitation services to patients.
5.The Application of Digital Intelligence Technology in the Management of Non-Hospitalized Patients with Rare Diseases
Yiyang YAO ; Yi GAO ; Yixuan GUO ; Zhuoyue QIN ; Yaofang ZHANG ; Jiaqi JING ; Jing XIE ; Jian GUO ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(1):46-53
To provide references to and give suggestions to the development and optimiza-tion of Digital Intelligence (DI) technology in management of non-hospitalized patients by systematical review the application of digital technology in non-hospital settings. We designed the search strategy and used the words " rare diseases"" patient management"" non-hospitalized management"" community management"" digital intelligence"" big data"" telemedicine" as MESH terms or free words. We searched the database of PubMed, Science-Direct, Web of Science, CNKI, Wanfang and VIP from the beginning of the database to July 2024 and used computer retrieval to get the literatures on the application of DI technology in the management of patients with rare diseases in non-hospital setting. We extracted the information of the first author, country or region, publication time, research participants, DI technology application, and application effect for summary analysis. A total of 13 articles were included in this study, which were from 8 countries or regions. We found that DI technologies used were in the following forms: Internet information platform, wearable devices, telemedicine management platform and electronic database. The DI technology was used by the patients with rare diseases, patient caregivers and professional medical staffs. The application of all the forms above in different populations had good effect. The Internet information platform helped patients and their caregivers learn more about the disease and improved their self-management ability. The wearable device helped monitor the health status of patients in real time and predict the risk of emergent events. The telemedicine management platform facilitated to optimize the allocation of medical resources and strengthen doctor-patient communication. The electronic health database promoted the interconnection of data inside and outside the hospital and improved the accuracy of decision-making through data sharing. The application of DI technology in the management of patients with rare diseases in non-hospitalized settings has shown positive results. In the future, it is necessary to correct the shortcomings and to deal with the challenges in terms of accuracy, readiness, applicability, and privacy protection. Besides, the DI can be integrated into the tri-level management system of patients known as the "patient-community-hospital". It is advisable to take the advantages of digital intelligence technology to improve the efficiency and quality of management of patients in non-hospitalized settings.
6.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
7.Application of artificial intelligence technology in the diagnosis and treatment of intracranial aneurysms
Jian LI ; Fangdi XU ; Fuyang WANG ; Pengjie ZHANG ; Yuhai LIU ; Yang CHEN ; Jing CAI
International Journal of Cerebrovascular Diseases 2024;32(3):216-220
The incidence of intracranial aneurysms is higher in population, and the death and disability rates after rupture are extremely high. Early detection of intracranial aneurysms, prediction of rupture risk, operation program, and evaluation of treatment outcomes are all the clinical concerns. With the continuously deepening integration of artificial intelligence technology and medicine, its application in the diagnosis and treatment of intracranial aneurysms is becoming increasingly widespread. This article reviews the current application status of artificial intelligence technology in the diagnosis and treatment of intracranial aneurysms.
8.Mechanism of effect of rosiglitazone on pancreatic cancer in diabetic mice based on impact of PPARy on glucose transport and metabolism
Rui-Ping HU ; Li-Feng SHANG ; He-Jing WANG ; Hong-Xia CHE ; Ming-Liang WANG ; Huan YANG ; Yuan-Yuan JIN ; Fei-Fei ZHANG ; Jian-Ling ZHANG
Chinese Pharmacological Bulletin 2024;40(7):1325-1334
Aim To explore the mechanism of the effect of rosiglitazone(Rsg)on the pancreatic cancer in diabetic mice based on the impact of PPARγ on glu-cose transport and metabolism.Methods A high-fat and high sugar diet combined with STZ was used to construct T2DM model;T2DM mice and normal mice were subcutaneously injected with PANC02 cells to construct a transplanted tumor model.T2DM trans-planted tumor mice and normal transplanted tumor mice were divided into the following groups:Rsg,PPARy inhibitor(PIN-2),rosiglitazone+PPARγ in-hibitor(Rsg+PIN-2),and normal transplanted tumor mice(NDM)and T2DM transplanted tumor mice(DM)were used as control groups,respectively.Tis-sue samples were collected after intervention.Tissue pathological changes were observed by HE staining.The expressions of Ki67 and PCNA proteins were de-tected by immunohistochemistry.Cell apoptosis was detected by TUNEL assay.The expression of PPARγwas detected by immunofluorescence.The expressions of Glucokinase,GLUT2,Nkx6.1,PDX-1RT-PCR were determined by Western blot.Results Rsg could significantly reduce the tumor mass,pathological chan-ges,Ki67 and PCNA expression of transplanted tumors(P<0.05),increase cell apoptosis and the expression of PPARγ,Glucokinase,GLUT2,Nkx6.1,PDX-1 proteins in NDM and DM mice(P<0.05).PIN-2 could reverse the indicator changes caused by Rsg in NDM and DM mice.However,compared with NDM mice,the above related indicators of the DM group mice were more sensitive to Rsg and PIN-2.Conclu-sions Compared to non-diabetic pancreatic cancer,rosiglitazone can more sensitively inhibit the prolifera-tion of pancreatic cancer with T2DM,induce apopto-sis,and reprogram the metabolism of pancreatic cancer with T2DM by activating PPA Rγ and altering the ex-pression of glucose and lipid metabolism genes,there-by exerting an anti-cancer effect.
9.Development and in vivo biomechanics of goat mobile artificial lumbar spine complex
Feng ZHANG ; Xi-Jing HE ; Jian-Tao LIU ; Rui WANG ; Jie QIN ; Quan-Jin ZANG ; Ting ZHANG ; Zhi-Yu LIU
China Journal of Orthopaedics and Traumatology 2024;37(3):281-287
Objective Mobile artificial lumbar complex(MALC)which suitable for reconstruction after subtotal lumbar resection in goats was developed,and to test stability of the complex and postoperative lumbar segmental motor function.Methods Eighteen male boer goats aged from 1 to 2 years old(weighted from 35 to 45 kg)were selected and divided into con-trol group,fusion group and non-fusion group,with 6 goats in each group.According to preoperative CT scans and MRI exami-nations of lumbar,the goat MALC was designed and performed by 3D printed for non-fusion group.Operation was performed on three groups respectively,and only vertebral body and disc were exposed in control group.In fusion group,L4 part of vertebral body and the upper and lower complete disc tissues were removed,and the lumbar spine bone plate fixation was performed with titanium mesh bone grafting.In non-fusion group,vertebral body and disc were removed in the same way,and MALC was im-planted.AP and lateral X-rays of lumbar vertebrae in goat were taken at 6 months after surgery,in order to understand whether the plant was dislocated,displaced and fractured.Biomechanical tests were performed on the specimens by mechanical instru-ment to measure range of motion(ROM)of L2,3,L,4,L4,5intervertebral space and the overall ROM of L2-5 lumbar vertebrae.Results MALC of lumbar vertebra was designed by 3D printing,and its component artificial vertebrae and upper and lower ar-tificial end plates were manufactured.The semi-spherical structure was fabricated by precision lathe using high-crosslinked polyethylene material,and the prosthesis was assembled.Postoperative AP and lateral X-rays of lumbar vertebra at 6 months showed the implant position of implant and MALC were good without displacement and dislocation.In vitro biomechanical test of lumbar vertebrae specimens:(1)There were no statistical significance in ROM of lumbar intervertebral space flexion and extension,lateral flexion and rotation on L.4 and L4,5,between non-fusion group and control group(P>0.05),while ROM of fu-sion group was significantly reduced compared with the other two groups(P<0.05).There were no significant difference in ROM of L2.3 intervertebral flexion and extension,lateral flexion and rotation between non-fusion group and control group(P>0.05),while fusion group was significantly increased compared with the other two groups(P<0.001).(2)There was no signifi-cant difference in overall lumbar ROM of L2-5(P>0.05).Conclusion The individual MALC could restore intervertebral height of lumbar vertebra while maintaining the stability of lumbar vertebra and re-establishing motor function of lumbar space.
10.Surveillance of antifungal resistance in clinical isolates of Candida spp.in East China Invasive Fungal Infection Group from 2018 to 2022
Dongjiang WANG ; Wenjuan WU ; Jian GUO ; Min ZHANG ; Huiping LIN ; Feifei WAN ; Xiaobo MA ; Yueting LI ; Jia LI ; Huiqiong JIA ; Lingbing ZENG ; Xiuhai LU ; Yan JIN ; Jinfeng CAI ; Wei LI ; Zhimin BAI ; Yongqin WU ; Hui DING ; Zhongxian LIAO ; Gen LI ; Hui ZHANG ; Hongwei MENG ; Changzi DENG ; Feng CHEN ; Na JIANG ; Jie QIN ; Guoping DONG ; Jinghua ZHANG ; Wei XI ; Haomin ZHANG ; Rong TANG ; Li LI ; Suzhen WANG ; Fen PAN ; Jing GAO ; Lu JIANG ; Hua FANG ; Zhilan LI ; Yiqun YUAN ; Guoqing WANG ; Yuanxia WANG ; Liping WANG
Chinese Journal of Infection and Chemotherapy 2024;24(4):402-409
Objective To monitor the antifungal resistance of clinical isolates of Candida spp.in the East China region.Methods MALDI-TOF MS or molecular methods were used to re-identify the strains collected from January 2018 to December 2022.Antifungal susceptibility testing was performed using the broth microdilution method.The susceptibility test results were interpreted according to the breakpoints of 2022 Clinical and Laboratory Standards Institute(CLSI)documents M27 M44s-Ed3 and M57s-Ed4.Results A total of 3 026 strains of Candida were collected,65.33%of which were isolated from sterile body sites,mainly from blood(38.86%)and pleural effusion/ascites(10.21%).The predominant species of Candida were Candida albicans(44.51%),followed by Candida parapsilosis complex(19.46%),Candida tropicalis(13.98%),Candida glabrata(10.34%),and other Candida species(0.79%).Candida albicans showed overall high susceptibility rates to the 10 antifungal drugs tested(the lowest rate being 93.62%).Only 2.97%of the strains showed dose-dependent susceptibility(SDD)to fluconazole.Candida parapsilosis complex had a SDD rate of 2.61%and a resistance rate of 9.42%to fluconazole,and susceptibility rates above 90%to other drugs.Candida glabrata had a SDD rate of 92.01%and a resistance rate of 7.99%to fluconazole,resistance rates of 32.27%and 48.24%to posaconazole and voriconazole non-wild-type strains(NWT),respectively,and susceptibility rates above 90%to other drugs.Candida tropicalis had resistance rates of 29.55%and 26.24%to fluconazole and voriconazole,respectively,resistance rates of 76.60%and 21.99%to posaconazole and echinocandins non-wild-type strains(NWT),and a resistance rate of 2.36%to echinocandins.Conclusions The prevalence and species distribution of Candida spp.in the East China region are consistent with previous domestic and international reports.Candida glabrata exhibits certain degree of resistance to fluconazole,while Candida tropicalis demonstrates higher resistance to triazole drugs.Additionally,echinocandins resistance has emerged in Candida albicans,Candida glabrata,Candida tropicalis,and Candida parapsilosis.

Result Analysis
Print
Save
E-mail