1.The mechanism of Laggerae Herba in improving chronic heart failure by inhibiting ferroptosis through the Nrf2/SLC7A11/GPX4 signaling pathway
Jinling XIAO ; Kai HUANG ; Xiaoqi WEI ; Xinyi FAN ; Wangjing CHAI ; Jing HAN ; Kuo GAO ; Xue YU ; Fanghe LI ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):343-353
Objective:
To investigate the role and mechanism of the heat-clearing and detoxifying drug Laggerae Herba in regulating the nuclear factor-erythroid 2-related factor-2(Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway to inhibit ferroptosis and improve chronic heart failure induced by transverse aortic arch constriction in mice.
Methods:
Twenty-four male ICR mice were divided into the sham (n=6) and transverse aortic arch constriction groups (n=18) according to the random number table method. The transverse aortic arch constriction group underwent transverse aortic constriction surgery to establish models. After modeling, the transverse aortic arch constriction group was further divided into the model, captopril, and Laggerae Herba groups according to the random number table method, with six mice per group. The captopril (15 mg/kg) and Laggerae Herba groups (1.95 g/kg) received the corresponding drugs by gavage, whereas the sham operation and model groups were administered the same volume of ultrapure water by gavage once a day for four consecutive weeks. After treatment, the cardiac function indexes of mice in each group were detected using ultrasound. The heart mass and tibia length were measured to calculate the ratio of heart weight to tibia length. Hematoxylin and eosin staining were used to observe the pathological changes in myocardial tissue. Masson staining was used to observe the degree of myocardial fibrosis. Wheat germ agglutinin staining was used to observe the degree of myocardial cell hypertrophy. Prussian blue staining was used to observe the iron deposition in myocardial tissue. An enzyme-linked immunosorbent assay was used to detect the amino-terminal pro-brain natriuretic peptide (NT-proBNP) and glutathione (GSH) contents in mice serum. Colorimetry was used to detect the malondialdehyde (MDA) content in mice serum. Western blotting was used to detect the Nrf2, GPX4, SLC7A11, and ferritin heavy chain 1 (FTH1) protein expressions in mice cardiac tissue.
Results:
Compared with the sham group, in the model group, the ejection fraction (EF) and fractional shortening (FS) of mice decreased, the left ventricular end-systolic volume (LVESV) and left ventricular end-systolic diameter (LVESD) increased, the left ventricular anterior wall end-systolic thickness (LVAWs) and left ventricular posterior wall end-systolic thickness (LVPWs) decreased, the ratio of heart weight to tibia length increased, the myocardial tissue morphology changed, myocardial fibrosis increased, the cross-sectional area of myocardial cells increased, iron deposition appeared in myocardial tissue, the serum NT-proBNP and MDA levels increased, the GSH level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue decreased (P<0.05). Compared with the model group, in the captopril and Laggerae Herba groups, the EF, FS, and LVAWs increased, the LVESV and LVESD decreased, the ratio of heart weight to tibia length decreased, the myocardial cells were arranged neatly, the degree of myocardial fibrosis decreased, the cross-sectional area of myocardial cells decreased, the serum NT-proBNP level decreased, and the GSH level increased. Compared with the model group, the LVPWs increased, the iron deposition in myocardial tissue decreased, the serum MDA level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue increased (P<0.05) in the Laggerae Herba group.
Conclusion
Laggerae Herba improves the cardiac function of mice with chronic heart failure caused by transverse aortic arch constriction, reduces the pathological remodeling of the heart, and reduces fibrosis. Its mechanism may be related to Nrf2/SLC7A11/GPX4 pathway-mediated ferroptosis.
2.Correlation analysis of serum SIRT1 and Vasostatin-2 content with pathological changes in diabetic retinopathy patients
Qing DONG ; Bo LIU ; Xingyuan BAO ; Jing WEI
International Eye Science 2025;25(6):962-967
AIM: To investigate the correlation of serum Silent mating-type information regulation 2 homolog 1(SIRT1)and Vasostatin-2 content with pathological changes in diabetic retinopathy(DR)patients.METHODS: A total of 104 DR patients(104 eyes)admitted to our hospital from April 2021 to April 2024 were included as the DR group. According to different disease stages, they were assigned into a non-proliferative DR(NPDR)group of 44 cases(44 eyes)and a proliferative DR(PDR)group of 60 cases(60 eyes). Meantime, 104 patients(104 eyes)with simple diabetes were treated as non-DR group. ELISA was applied to detect the levels of SIRT1 and Vasostatin-2 in serum. The diagnostic value of serum SIRT1 and Vasostatin 2 in DR was analyzed by ROC curve. Multivariate Logistic regression was applied to analyze the factors that affected the occurrence of DR. Pearson correlation was applied to analyze the relationship between the levels of SIRT1 and Vasostatin-2 in the serum of DR patients and angiogenesis indicators(VEGF, Ang-2).RESULTS: Compared with the non-DR group, the levels of SIRT1 and Vasostatin-2 in the serum of the DR group were significantly decreased(P<0.05). Compared with the NPDR group, the levels of SIRT1 and Vasostatin-2 in the serum of the PDR group were significantly decreased(P<0.05). Compared with the non-DR group, the levels of VEGF and Ang-2 in the serum of the DR group were obviously higher(P<0.05). Compared with the single detection of serum SIRT1 and Vasostatin-2 levels, combined detection significantly increased the AUC in the diagnosis of DR(Z=4.180, 5.128, all P<0.05). Multivariate Logistic regression analysis showed that HOMA-IR(OR=3.455), fasting blood glucose(OR=1.467), SIRT1(OR=0.836), Vasostatin-2(OR=0.767), VEGF(OR=2.564), and Ang-2(OR=1.834)levels were the influencing factors on the occurrence of DR(all P<0.05). Pearson correlation analysis showed that the levels of SIRT1 and Vasostatin-2 in the serum of DR patients were negatively correlated with VEGF and Ang-2(rSIRT1 vs VEGF=-0.395, rSIRT1 vs Ang-2=-0.474, rVasostatin-2 vs VEGF=-0.323, rVasostatin-2 vs Ang-2=-0.583, all P<0.001).CONCLUSION: The abnormal decrease of serum SIRT1 and Vasostatin 2 levels in DR patients is closely related to the stage of DR lesions and angiogenesis.
3.Role of ATG12 in The Development of Disease
Wei LIU ; Rui TIAN ; Ce-Fan ZHOU ; Jing-Feng TANG
Progress in Biochemistry and Biophysics 2025;52(5):1081-1098
Autophagy, a highly conserved cellular degradation mechanism, maintains intracellular homeostasis by removing damaged organelles and abnormal proteins. Its dysregulation is closely associated with various diseases. Autophagy-related protein 12 (ATG12), a core member of the ubiquitin-like protein family, covalently binds to ATG5 through a ubiquitin-like conjugation system to form the ATG12-ATG5-ATG16L1 complex. This complex directly regulates the formation and maturation of autophagosomes, making ATG12 a key molecule in the initiation of autophagy. Recent studies have revealed that ATG12 functions extend far beyond the classical autophagy context. It promotes apoptosis by binding to anti-apoptotic proteins of the Bcl-2 family (e.g., Bcl-2 and Mcl-1) and enhances host antiviral immunity by regulating the NF-κB and interferon signaling pathways. Moreover, ATG12 deficiency can lead to mitochondrial biogenesis impairment, energy metabolism disorders, and substrate-dependent metabolic shifts, underscoring its pivotal role in cellular metabolic homeostasis. At the disease level, dysregulation of ATG12 expression is closely linked to tumorigenesis and cancer progression. By modulating the dynamic balance between autophagy and apoptosis, ATG12 influences cancer cell proliferation, metastasis, and chemoresistance. Notably, ATG12 is abnormally overexpressed in multiple cancers, including breast, liver, and gastric cancer, highlighting its potential as a therapeutic target. Furthermore, in neurodegenerative diseases such as Parkinson’s disease, ATG12 mitigates protein toxicity by enhancing mitochondrial autophagy. In cardiovascular diseases, it alleviates ischemia-reperfusion injury by regulating cardiomyocyte autophagy and apoptosis, demonstrating its broad regulatory role across various pathological conditions. Genetic studies further underscore the clinical significance of ATG12. Polymorphisms in the ATG12 gene (e.g., rs26537 and rs26538) have been significantly associated with the risk of head and neck squamous cell carcinoma, hepatocellular carcinoma, and atrophic gastritis. Notably, the risk allele of rs26537 enhances ATG12 promoter activity, leading to its overexpression and promoting tumorigenesis. These findings provide a molecular basis for individualized risk assessment and targeted interventions based on ATG12 genotype. Despite significant progress, many aspects of ATG12 biology remain unclear. The precise regulatory mechanisms of its post-translational modifications (e.g., ubiquitination and acetylation) are yet to be fully elucidated. Additionally, the molecular pathways underlying its non-canonical functions, such as metabolic regulation and immune modulation, require further investigation. Moreover, the functional heterogeneity of ATG12 in different tumor microenvironments and its role in drug resistance warrant in-depth exploration. Future research should integrate advanced technologies such as cryo-electron microscopy, single-cell sequencing, and organoid models to decipher the intricate regulatory network of ATG12. Additionally, developing small-molecule inhibitors or gene-editing tools targeting its protein interaction interfaces (e.g., the ATG12-ATG3 binding domain) may help overcome current therapeutic challenges. Through interdisciplinary collaboration and clinical translation, ATG12 holds promise as a next-generation molecular target for precision intervention in autophagy-related diseases. This review summarizes the structure and function of ATG12, its role in autophagy initiation, its physiological functions, and its involvement in disease pathogenesis. Furthermore, it discusses future research directions and potential challenges, emphasizing ATG12’s potential as a biomarker and therapeutic target in autophagy-related diseases.
4.Effect and mechanism of Prunus mume against hepatic fibrosis
Feng HAO ; Ji LI ; Jing DU ; Yuchen OUYANG ; Yichun CUI ; Shuang WEI
China Pharmacy 2025;36(2):172-178
OBJECTIVE To explore the effect and mechanism of Prunus mume against hepatic fibrosis (HF). METHODS Male SD rats were randomly divided into normal control group (n=10) and modeling group (n=50). The modeling group established HF model using carbon tetrachloride. The modeled rats were randomly divided into model group (normal saline), positive control group [colchicine, 0.09 mg/(kg·d)], and P. mume low-dose, medium-dose and high-dose groups [1.35, 2.70, 5.40 g/(kg·d)], with 9 rats in each group. They were given the corresponding drug/normal saline intragastrically, once a day, for 8 consecutive weeks. After the last medication, the liver index was calculated, while liver function indexes, liver fiber indexes, oxidative stress indicators and inflammatory factors of rats were measured. HE staining was used to observe the pathological changes in liver tissue of rats; Masson staining was used to observe the degree of HF in liver tissue of rats; transmission electron microscopy was used to observe the ultrastructure of liver tissue in rats; TUNEL staining was used to detect liver cell apoptosis in each group of rats. Western blot method was used to detect the protein expressions of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) in liver tissue of rats. RESULTS Compared with normal control group, the levels of alanine transaminase, alkaline phosphatase, aspartate transaminase, total bilirubin, malondialdehyde, procollagen type Ⅲ protein, Ⅳ-type pre collagenase, laminin, hyaluronic acid, interleukin-6, tumor necrosis factor-α, as well as the protein expressions of TGF-β1 and PDGF in model group were increased significantly, while the levels of superoxide dismutase and glutathione peroxidase were significantly reduced (P<0.01); the HE, Masson staining and transmission electron microscopy observation results showed obvious HF characteristics in rats of model group. Compared with model group, varying degrees of improvement in above indexes were observed in P. mume groups, and the above 2021BSZR011) indicators of rats in P. mume medium-dose and high-dose groups were reversed significantly (P<0.05 or P<0.01). CONCLUSIONS P. mume has an anti-HF effect, which may be achieved through mechanisms such as antioxidation, anti-inflammation, reduction of collagen production, inhibition of PDGF protein expression, and regulation of TGF- β1 signaling pathway.
5.Effect and mechanism of Prunus mume against hepatic fibrosis
Feng HAO ; Ji LI ; Jing DU ; Yuchen OUYANG ; Yichun CUI ; Shuang WEI
China Pharmacy 2025;36(2):172-178
OBJECTIVE To explore the effect and mechanism of Prunus mume against hepatic fibrosis (HF). METHODS Male SD rats were randomly divided into normal control group (n=10) and modeling group (n=50). The modeling group established HF model using carbon tetrachloride. The modeled rats were randomly divided into model group (normal saline), positive control group [colchicine, 0.09 mg/(kg·d)], and P. mume low-dose, medium-dose and high-dose groups [1.35, 2.70, 5.40 g/(kg·d)], with 9 rats in each group. They were given the corresponding drug/normal saline intragastrically, once a day, for 8 consecutive weeks. After the last medication, the liver index was calculated, while liver function indexes, liver fiber indexes, oxidative stress indicators and inflammatory factors of rats were measured. HE staining was used to observe the pathological changes in liver tissue of rats; Masson staining was used to observe the degree of HF in liver tissue of rats; transmission electron microscopy was used to observe the ultrastructure of liver tissue in rats; TUNEL staining was used to detect liver cell apoptosis in each group of rats. Western blot method was used to detect the protein expressions of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) in liver tissue of rats. RESULTS Compared with normal control group, the levels of alanine transaminase, alkaline phosphatase, aspartate transaminase, total bilirubin, malondialdehyde, procollagen type Ⅲ protein, Ⅳ-type pre collagenase, laminin, hyaluronic acid, interleukin-6, tumor necrosis factor-α, as well as the protein expressions of TGF-β1 and PDGF in model group were increased significantly, while the levels of superoxide dismutase and glutathione peroxidase were significantly reduced (P<0.01); the HE, Masson staining and transmission electron microscopy observation results showed obvious HF characteristics in rats of model group. Compared with model group, varying degrees of improvement in above indexes were observed in P. mume groups, and the above 2021BSZR011) indicators of rats in P. mume medium-dose and high-dose groups were reversed significantly (P<0.05 or P<0.01). CONCLUSIONS P. mume has an anti-HF effect, which may be achieved through mechanisms such as antioxidation, anti-inflammation, reduction of collagen production, inhibition of PDGF protein expression, and regulation of TGF- β1 signaling pathway.
6.Development of a new paradigm for precision diagnosis and treatment in traditional Chinese medicine
Jingnian NI ; Mingqing WEI ; Ting LI ; Jing SHI ; Wei XIAO ; Jing CHENG ; Bin CONG ; Boli ZHANG ; Jinzhou TIAN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):43-47
The development of traditional Chinese medicine (TCM) diagnosis and treatment has undergone multiple paradigms, evolving from sporadic experiential practices to systematic approaches in syndrome differentiation and treatment and further integration of disease and syndrome frameworks. TCM is a vital component of the medical system, valued alongside Western medicine. Treatment based on syndrome differentiation embodies both personalized treatment and holistic approaches; however, the inconsistency and lack of stability in syndrome differentiation limit clinical efficacy. The existing integration of diseases and syndromes primarily relies on patchwork and embedded systems, where the full advantages of synergy between Chinese and Western medicine are not fully realized. Recently, driven by the development of diagnosis and treatment concepts and advances in analytical technology, Western medicine has been rapidly transforming from a traditional biological model to a precision medicine model. TCM faces a similar need to progress beyond traditional syndrome differentiation and disease-syndrome integration toward a more precise diagnosis and treatment paradigm. Unlike the micro-level precision trend of Western medicine, precision diagnosis and treatment in TCM is primarily reflected in data-driven applications that incorporate information at various levels, including precise syndrome differentiation, medication, disease management, and efficacy evaluation. The current priority is to accelerate the development of TCM precision diagnosis and treatment technology platforms and advance discipline construction in this area.
7.Decision-making behavior in patients with depressive disorder and its relationship with depressive and anxiety symptoms
Yuxiang WANG ; Luoya ZHANG ; Maomao ZHANG ; Juan DENG ; Yanjie PENG ; Xiaotong CHENG ; Kezhi LIU ; Wei LEI ; Jing CHEN
Sichuan Mental Health 2025;38(1):22-27
BackgroundPatients with depressive disorder often exhibit impaired decision-making functions. However, the relationship between decision-making abilities and depressive and anxiety symptoms in these patients remains unclear. ObjectiveTo explore the characteristics of decision-making behavior in patients with depressive disorder, and to analyze its relationship with clinical symptoms. MethodsA total of 48 patients diagnosed with depressive disorder according to the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) were recruited from the Department of Psychosomatic Medicine of the Affiliated Hospital of Southwest Medical University from October 2020 to May 2023. Concurrently, 52 healthy individuals matched for age and gender were recruited from Luzhou as the control group. Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI) were used for assessment, and decision-making behavior was evaluated using Probabilistic Reversal Learning (PRL) task. Indicators assessed included the number of trials to criterion, perseverative errors, win-stay rate and lose-shift rate. Spearman correlation analysis was used to assess the correlation between BDI and BAI scores and PRL task indicators. ResultsThe depression group showed a significantly higher lose-shift rate compared with the control group (t=3.684, P<0.01). There were no statistically significant differences between two groups in trials to criterion, perseverative errors and win-stay rate (t=0.329, 0.132, 0.609, P>0.05). In depression group, BDI and BAI scores were positively correlated with the win-stay rate(r=0.450, 0.398, P<0.01). ConclusionPatients with depressive disorder are more likely to change their decision-making strategies following negative outcomes. Furthermore, the severity of depressive and anxiety symptoms is associated with a greater propensity to maintain existing decisions after receiving positive feedback. [Funded by 2019 Joint Project of Luzhou Science and Technology Bureau-Southwest Medical University (number, 2019LZXNYDJ39]
8.Theoretical Exploration of Diabetic Retinopathy Guided by Luobing Theory
Liping CHANG ; Jing MA ; Kun MA ; Zhenhua JIA ; Cong WEI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):253-258
Diabetic retinopathy(DR), as one of the most common and serious microvascular complications of diabetes mellitus, seriously threatens human health, and belongs to "Xiaoke eye diseases" in traditional Chinese medicine(TCM), which has been richly experienced by medical practitioners through the ages, but is mostly recorded in a piecemeal manner and has not been systematically researched. This disease is featured by long course and repeated attack, and is refractory, which belongs to the research category of "persistent illness entering collaterals". Systematic establishment of TCM collateral disease theory for guiding prevention and treatment of DR has important clinical value. On the basis of close correlation between tertiary collaterals at the terminal of collaterals and capillaries and microcirculation, the concept of "tertiary collaterals-microvascular" is proposed. It is pointed out that DR falls within the scope of "tertiary collaterals-microvascular" diseases, and presents four types of micro-pathological characteristics, including stasis, insufficiency, growth and bleeding of tertiary collaterals. It is concluded that "deficiency of both Qi and Yin" is the basic pathogenesis of DR, and "blood stasis and collateral obstruction" is the important pathogenesis and key factor. Thus, the treatment method of "dispersing blood stasis, dredging collateral, tonifying Qi and Yin, stopping hemorrhage and improving eyesight" is determined, and the formula of Tongluo Mingmu capsules is developed. The article tightly focuses on the pathological changes such as stasis, growth, insufficiency and bleeding of collaterals, addresses both symptoms and root causes, and plays a synergistic role of both dispersing stasis and stopping bleeding. In this way, it can realize the purpose of tonifying Qi and Yin to replenish the essence, dispersing stasis and dredging collaterals to meet the requirement, as well as stopping hemorrhage and improving eyesight to deal with changes. Fundamental researches demonstrate that Tongluo Mingmu capsules has synergy effects of protecting both retinal capillaries and retinal cells. Phase-Ⅲ clinical trial of new drug has proven definite clinical efficacy and good safety, which provides a new drug choice for enhancing clinical effect of DR, and further supports the scientific value of Luobing theory in preventing and treating DR and other clinically significant diseases.
9.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
10.A prediction model for high-risk cardiovascular disease among residents aged 35 to 75 years
ZHOU Guoying ; XING Lili ; SU Ying ; LIU Hongjie ; LIU He ; WANG Di ; XUE Jinfeng ; DAI Wei ; WANG Jing ; YANG Xinghua
Journal of Preventive Medicine 2025;37(1):12-16
Objective:
To establish a prediction model for high-risk cardiovascular disease (CVD) among residents aged 35 to 75 years, so as to provide the basis for improving CVD prevention and control measures.
Methods:
Permanent residents aged 35 to 75 years were selected from Dongcheng District, Beijing Municipality using the stratified random sampling method from 2018 to 2023. Demographic information, lifestyle, waist circumference and blood biochemical indicators were collected through questionnaire surveys, physical examinations and laboratory tests. Influencing factors for high-risk CVD among residents aged 35 to 75 years were identified using a multivariable logistic regression model, and a prediction model for high-risk CVD was established. The predictive effect was evaluated using the receiver operating characteristic (ROC) curve.
Results:
A total of 6 968 individuals were surveyed, including 2 821 males (40.49%) and 4 147 females (59.51%), and had a mean age of (59.92±9.33) years. There were 1 155 high-risk CVD population, with a detection rate of 16.58%. Multivariable logistic regression analysis showed that gender, age, smoking, central obesity, systolic blood pressure, fasting blood glucose, triglyceride and low-density lipoprotein cholesterol were influencing factors for high-risk CVD among residents aged 35 to 75 years (all P<0.05). The area under the ROC curve of the established prediction model was 0.849 (95%CI: 0.834-0.863), with a sensitivity of 0.693 and a specificity of 0.863, indicating good discrimination.
Conclusion
The model constructed by eight factors including demographic characteristics, lifestyle and blood biochemical indicators has good predictive value for high-risk CVD among residents aged 35 to 75 years.


Result Analysis
Print
Save
E-mail