1.Quality evaluation of Mongolian medicine Sendeng-4 based on qualitative and quantitative analysis combined with chemical pattern recognition
Fengye ZHOU ; Jun LI ; Qian ZHANG ; Rongjie LI ; Wei ZHANG ; Jing LIU ; Fang WANG ; Shengnan LI
China Pharmacy 2025;36(9):1040-1045
OBJECTIVE To evaluate the quality of Mongolian medicine Sendeng-4 based on qualitative and quantitative analysis combined with chemical pattern recognition, in order to provide the reference for its quality control. METHODS The chemical components in Sendeng-4 were analyzed qualitatively by HPLC-Q-Exactive-MS. The contents of 16 components (methyl gallate, ethyl gallate, epicatechin, dihydromyricetin, genipin-1-O-β-D-gentiobioside, caffeic acid, catechin, corilagin, deacetylasperulosidic acid methyl ester, rutin, geniposide, luteolin, myricetin, quercetin, ferulic acid, and toosendanin) in 15 batches of Sendeng-4 (sample S1-S15) were quantitatively analyzed by HPLC-MS/MS. Cluster analysis (CA), principal component analysis (PCA), and orthogonal partial least squares discriminant analysis were conducted and variable importance projection (VIP) value greater than 1 was used as the index to screen the differential components. RESULTS A total of 73 chemical components were identified in Sendeng-4, including 20 flavonoids, 16 tannins, 14 organic acids, etc. According to the quantitative analysis, the results exhibited that the average contentsthe of above 16 components in 15 batches of Sendeng-4 were 3.683-7.730, 2.391-6.952, 2 275.538-4 377.491, 2 699.188-3 537.924, 858.266-1 377.393, 3.366-11.003, 140.624-315.683,414.629-978.334, 285.501-1 510.457, 27.799-48.325, 3 625.415-6 309.563, 0.506-0.656, 442.337-649.283, 47.093-59.736, 12.942-15.822, 127.738-326.649 μg/g, respectively. According to the results of CA and PCA, 15 batches of samples could be clustered into two categories: S1-S3, S5-S6, S9-S10 and S13 were clustered into one category; S4, S7-S8, S11-S12, S14-S15 were clustered into one category. VIP values of geniposide, epicatechin, deacetylasperulosidic acid methyl ester and genipin-1-O- β-D-gentiobioside were all greater than 1. CONCLUSIONS HPLC-Q-Exactive-MS and HPLC-MS/MS techniques are employed for the qualitative and quantitative analysis of Sendeng-4. Through chemical pattern recognition analysis, four differential components are identified: geniposide, epicatechin, deacetylasperulosidic acid methyl ester, and genipin-1-O-β-D-gentiobioside.
2.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
3.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
4.Development of Zinc-Containing Chitosan/Gelatin Coatings with Immunomodulatory Effect for Soft Tissue Sealing around Dental Implants
Jing HAN ; Jorine G. F. SANDERS ; Lea ANDRÉE ; Bart A. J. A. van OIRSCHOT ; Adelina S. PLACHOKOVA ; Jeroen J. J. P. van den BEUCKEN ; Sander C. G. LEEUWENBURGH ; Fang YANG
Tissue Engineering and Regenerative Medicine 2025;22(1):57-75
BACKGROUND:
Soft tissue integration (STI) around dental implant abutments is a prerequisite to prevent bacterial invasion and achieve successful dental implant rehabilitation. However, peri-implant STI is a major challenge after dental abutment placement due to alterations in the immune microenvironment upon surgical dental implant installation.
METHODS:
Based on known immunomodulatory effects of zinc, we herein deposited zinc/chitosan/gelatin (Zn/CS/Gel) coatings onto titanium substrates to study their effect on macrophages. First, we exposed macrophages to cell culture media containing different zinc ion (Zn2+) concentrations. Next, we explored the immunomodulatory effect of Zn/CS/Gel coatings prepared via facile electrophoretic deposition (EPD).
RESULTS:
We found that Zn2+ effectively altered the secretome by reducing the secretion of pro-inflammatory and enhancing pro-regenerative cytokine secretion, particularly at a Zn2+ supplementation of approximately 37.5 μM. Zn/CS/Gel coatings released Zn2+ in a concentration range which effectively stimulated pro-regenerative macrophage polarization as demonstrated by M2 macrophage polarization. Additionally, the impact of these Zn2+-exposed macrophages on gingival fibroblasts incubated in conditioned medium showed stimulated adhesion, proliferation, and collagen secretion.
CONCLUSION
Our promising results suggest that controlled release of Zn2+ from Zn/CS/Gel coatings could be applied to immunomodulate peri-implant STI, and to enhance dental implant survival.
5.Mechanism of Feibi prescription on mitochondrial apoptosis of alveolar epithelial cells in mice with pulmonary fibrosis
Xue CHENG ; Huanxi JING ; Yunke ZHANG ; Hong FANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2334-2339
BACKGROUND:Studies have shown that mitochondrial apoptosis of alveolar epithelial cells plays an important role in the pathogenesis of pulmonary fibrosis,and Feibi prescription can attenuate pulmonary fibrosis and inhibit the transformation of extracellular mechanisms in mice with pulmonary fibrosis. OBJECTIVE:To investigate the mechanism of Feibi prescription on mitochondrial apoptpsis of alveolar epithelial cells in bleomycin induced pulmonary fibrosis mice. METHODS:Forty male C57BL/6 mice were randomly divided into blank control group,model group,pirfenidone group,and Feibi prescription group.There were 10 mice in each group.Except for the blank control group,the other three groups were intraperitoneally injected with bleomycin(7.5 mg/kg per day)for 10 continuous days to establish the model of pulmonary fibrosis.On day 1 after modeling,the mice in corresponding drug groups were intragastrically administered with pirfenidone(51.43 mg/kg per day)or Feibi prescription(12.86 mg/kg per day).Drug administration lasted for 28 days.Then,morphological changes of lung tissue in mice were observed by hematoxylin-eosin staining and Masson staining.The levels of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 in the serum were detected by ELISA,and the expression of Bax,Bcl-2,Beclin-1,and Caspase3 in the lung tissue was detected by western blot assay. RESULTS AND CONCLUSION:Morphological observation of lung tissue showed that in the model group,the alveolar septum and alveolar lumen were infiltrated with a large number of inflammatory cells,and there were large clusters of fibrous foci;in the pirfenidone group,alveolar septa were thickened,with a small infiltration of inflammatory cells and the appearance of pulmonary fibrous foci;in the Feibi prescription group,the alveolar structure was widened,with a small amount of inflammatory cell infiltration,and the alveolar structure was almost not obviously damaged,with a small number of lung fibrous foci.Compared with the blank control group,the mass concentrations of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 were significantly higher in the model group(P<0.01),while the levels were significantly lower in the two drug groups than the model group(P<0.01).Moreover,the mass concentrations of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 in the Feibi prescription group were lower than those in the pirfenidone group.Compared with the blank control group,the expression of Bax and Caspase3 proteins in the lung tissue of mice was significantly higher in the model group,while the expression of Bax and Caspase3 proteins was significantly lower in the two drug groups than the model group.Compared with the blank control group,the expression of Bcl-2 and Beclin-1 proteins in the lung tissue of mice was significantly lower in the model group,while the expression of Bcl-2 and Beclin-1 proteins was significantly higher in the two drug groups than the model group.To conclude,Feibi prescription can reduce pulmonary fibrosis and its mechanism may be related to the downregulation of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 levels.This prescription can also reduce the apoptosis of alveolar epithelial cells by regulating mitochondrial apoptosis-related proteins,Bax,Bcl-2,Beclin-1 and Caspase3.
6.Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation
Yuan YIN ; Jing HE ; Yu FANG ; Min WEI ; Wang ZHANG
Biomolecules & Therapeutics 2025;33(3):529-543
Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and in vivo/in vitro experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. In vivo, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. In vitro studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD’s multi-target mechanism, directly addressing DN’s core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.
7.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
8.Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation
Yuan YIN ; Jing HE ; Yu FANG ; Min WEI ; Wang ZHANG
Biomolecules & Therapeutics 2025;33(3):529-543
Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and in vivo/in vitro experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. In vivo, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. In vitro studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD’s multi-target mechanism, directly addressing DN’s core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.
9.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
10.Development of Zinc-Containing Chitosan/Gelatin Coatings with Immunomodulatory Effect for Soft Tissue Sealing around Dental Implants
Jing HAN ; Jorine G. F. SANDERS ; Lea ANDRÉE ; Bart A. J. A. van OIRSCHOT ; Adelina S. PLACHOKOVA ; Jeroen J. J. P. van den BEUCKEN ; Sander C. G. LEEUWENBURGH ; Fang YANG
Tissue Engineering and Regenerative Medicine 2025;22(1):57-75
BACKGROUND:
Soft tissue integration (STI) around dental implant abutments is a prerequisite to prevent bacterial invasion and achieve successful dental implant rehabilitation. However, peri-implant STI is a major challenge after dental abutment placement due to alterations in the immune microenvironment upon surgical dental implant installation.
METHODS:
Based on known immunomodulatory effects of zinc, we herein deposited zinc/chitosan/gelatin (Zn/CS/Gel) coatings onto titanium substrates to study their effect on macrophages. First, we exposed macrophages to cell culture media containing different zinc ion (Zn2+) concentrations. Next, we explored the immunomodulatory effect of Zn/CS/Gel coatings prepared via facile electrophoretic deposition (EPD).
RESULTS:
We found that Zn2+ effectively altered the secretome by reducing the secretion of pro-inflammatory and enhancing pro-regenerative cytokine secretion, particularly at a Zn2+ supplementation of approximately 37.5 μM. Zn/CS/Gel coatings released Zn2+ in a concentration range which effectively stimulated pro-regenerative macrophage polarization as demonstrated by M2 macrophage polarization. Additionally, the impact of these Zn2+-exposed macrophages on gingival fibroblasts incubated in conditioned medium showed stimulated adhesion, proliferation, and collagen secretion.
CONCLUSION
Our promising results suggest that controlled release of Zn2+ from Zn/CS/Gel coatings could be applied to immunomodulate peri-implant STI, and to enhance dental implant survival.

Result Analysis
Print
Save
E-mail