1.Mechanism of Naoxintong Capsules Against Ischemia-reperfusion Injury in Rats via Inhibiting Pericyte Contraction Based on RHOA/ROCK1 Pathway
Yinlian WEN ; Jinfeng SHANG ; Bohong WANG ; Wanting WEI ; Xiaolu ZHANG ; Guijinfeng HUANG ; Xin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):159-167
ObjectiveTo investigate the mechanism of Naoxintong capsules on ischemia-reperfusion (I/R) injury in rats based on the changes of pericytes mediated by Ras homolog family member A (RHOA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK1) pathway. MethodsNinety rats (15 rats for each group) were randomly divided into a sham operation group, a model group, a positive control group receiving Ginkgo biloba extract (21.6 mg·kg-1), and groups receiving Naoxintong capsules at low, medium, and high doses of 55, 110, and 220 mg·kg-1 (NXT-L, NXT-M, and NXT-H groups), respectively. Except for those in the sham operation group, all rats were subjected to transient middle cerebral artery occlusion (tMCAO) to establish the experiment model. Nerve function was assessed using a neurological function score. Cerebral blood flow was detected using a laser speckle contrast imager, and the cerebral infarction rate was calculated using 2,3,5-Triphenyl tetrazolium chloride (TTC) staining. Pathological changes were observed by hematoxylin-eosin (HE) staining and Nissl staining, while pericyte morphology was observed via transmission electron microscopy. Blood-brain barrier destruction was observed by Evans blue staining. Albumin and ischemia-modified albumin levels were measured using assay kits. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to detect the mRNA and protein expression levels of RHOA, ROCK1, platelet-derived growth factor receptor β (PDGFRB), α-smooth muscle actin (α-SMA), tight junction protein (ZO-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). ResultsCompared with the sham operation group, the model group exhibited decreased neurological function scores, higher percentage reduction in blood flow, and increased cerebral infarction rates (P<0.01). Additionally, cortical neuronal nucleus shrinkage, edema, a decreased number of Nissl bodies, reduced pericyte area, elevated albumin content in the cortex (P<0.05), and increased ischemic modified albumin levels (P<0.01) were observed. The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were increased (P<0.01), while those of ZO-1 were decreased. Compared with the model group, all treatment groups showed improved neurological function scores, lower percentage reduction in blood flow, reduced cerebral infarction rates (P<0.01), alleviated cortical histological changes, increased number of Nissl bodies, expanded pericyte area, decreased albumin content in the cortex, and reduced ischemia-modified albumin levels (P<0.01). The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were decreased (P<0.01), while those of ZO-1 were increased. Among the treatment groups, the NXT-M group showed the most pronounced improvement in cerebral I/R injury. ConclusionNaoxintong capsules can restore cerebral blood supply, reduce microcirculation disturbance, and protect blood-brain barrier in rats with I/R injury. Its mechanism of action may be related to the inhibition of the RHOA/ROCK1 signaling pathway and reduced pericyte contraction.
2.Mechanism of Naoxintong Capsules Against Ischemia-reperfusion Injury in Rats via Inhibiting Pericyte Contraction Based on RHOA/ROCK1 Pathway
Yinlian WEN ; Jinfeng SHANG ; Bohong WANG ; Wanting WEI ; Xiaolu ZHANG ; Guijinfeng HUANG ; Xin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):159-167
ObjectiveTo investigate the mechanism of Naoxintong capsules on ischemia-reperfusion (I/R) injury in rats based on the changes of pericytes mediated by Ras homolog family member A (RHOA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK1) pathway. MethodsNinety rats (15 rats for each group) were randomly divided into a sham operation group, a model group, a positive control group receiving Ginkgo biloba extract (21.6 mg·kg-1), and groups receiving Naoxintong capsules at low, medium, and high doses of 55, 110, and 220 mg·kg-1 (NXT-L, NXT-M, and NXT-H groups), respectively. Except for those in the sham operation group, all rats were subjected to transient middle cerebral artery occlusion (tMCAO) to establish the experiment model. Nerve function was assessed using a neurological function score. Cerebral blood flow was detected using a laser speckle contrast imager, and the cerebral infarction rate was calculated using 2,3,5-Triphenyl tetrazolium chloride (TTC) staining. Pathological changes were observed by hematoxylin-eosin (HE) staining and Nissl staining, while pericyte morphology was observed via transmission electron microscopy. Blood-brain barrier destruction was observed by Evans blue staining. Albumin and ischemia-modified albumin levels were measured using assay kits. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to detect the mRNA and protein expression levels of RHOA, ROCK1, platelet-derived growth factor receptor β (PDGFRB), α-smooth muscle actin (α-SMA), tight junction protein (ZO-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). ResultsCompared with the sham operation group, the model group exhibited decreased neurological function scores, higher percentage reduction in blood flow, and increased cerebral infarction rates (P<0.01). Additionally, cortical neuronal nucleus shrinkage, edema, a decreased number of Nissl bodies, reduced pericyte area, elevated albumin content in the cortex (P<0.05), and increased ischemic modified albumin levels (P<0.01) were observed. The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were increased (P<0.01), while those of ZO-1 were decreased. Compared with the model group, all treatment groups showed improved neurological function scores, lower percentage reduction in blood flow, reduced cerebral infarction rates (P<0.01), alleviated cortical histological changes, increased number of Nissl bodies, expanded pericyte area, decreased albumin content in the cortex, and reduced ischemia-modified albumin levels (P<0.01). The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were decreased (P<0.01), while those of ZO-1 were increased. Among the treatment groups, the NXT-M group showed the most pronounced improvement in cerebral I/R injury. ConclusionNaoxintong capsules can restore cerebral blood supply, reduce microcirculation disturbance, and protect blood-brain barrier in rats with I/R injury. Its mechanism of action may be related to the inhibition of the RHOA/ROCK1 signaling pathway and reduced pericyte contraction.
4.Logical approach of promoting ideological and political education in medical colleges and universities through the red doctor culture
Zhuoyan YANG ; Zhonghua LI ; Jinfeng ZHANG ; Cheng CHENG
Chinese Medical Ethics 2025;38(7):853-860
The red doctor culture runs through the development process of China’s red health undertakings. It is a unity of revolutionary culture, health culture, and educational culture, providing rich educational resources for ideological and political education in medical colleges and universities. From the perspective of historical logic, red doctor culture is rooted in the traditional medical ethics thought of “medicine is the art of benevolence” in ancient China, as well as has evolved alongside the century-long development of the health and well-being undertakings led by the Communist Party of China. From the perspective of theoretical logic, red doctor culture is closely related to Xi Jinping Thought on Culture, the principle of the dialectical relationship between social existence and social consciousness, and the theory of cultural leadership. From the perspective of practical logic, it is necessary to clarify the practical path from three aspects, namely accurately grasping the Marxist theoretical foundation of the red doctor culture and highlighting its orientation of the ideological and political education of medical students; making effective use of existing resources of red doctor culture to improve the content of ideological and political education and consolidate the foundation of red doctor literacy; optimizing the construction of teaching teams for ideological and political theory courses in medical colleges and universities. From the perspective of value orientation, the red doctor culture is conducive to cultivating the professional ethics spirit of medical students, meeting the teaching needs of ideological and political theory courses in medical colleges and universities, and assisting the construction of the healthy China initiative.
5.Improvement effect and mechanism of salidroside on radiation-induced parotid gland injury in rats by VIP-cAMP pathway
Chunying ZHANG ; Guangwei YIN ; Hong CHEN ; Mingda YOU ; Jinfeng LIU ; Yakun ZHANG ; Yaojie HU
China Pharmacy 2025;36(22):2796-2801
OBJECTIVE To explore the improvement effect and mechanism of salidroside on radiation-induced parotid gland injury in rats. METHODS Rats were randomly assigned into normal group, radiation group, salidroside low-dose (salidroside-L, 50 mg/kg) group, salidroside high-dose (salidroside-H, 100 mg/kg) group, and salidroside-H+inhibitor (100 mg/kg salidroside+0.1 µmol/kg H-89) group, with 10 rats in each group. Except for the normal group, rats in the other groups were subjected to radiation exposure to establish a model of radiation-induced parotid gland injury. Rats in each group were intraperitoneally injected with the corresponding drug or normal saline, once a day, for 40 consecutive days. After the last administration, the levels of reactive oxygen species (ROS), cyclic adenosine monophosphate (cAMP), superoxide dismutase (SOD), and amylase in serum were detected; the pathological changes of parotid gland tissue were observed; the apoptosis rate of parotid gland tissue cells, the expression levels of B-cell lymphoma-2 (Bcl-2) and its associated X protein (Bax), mRNA expression levels of interleukin-6 (IL- 6) and tumor necrosis factor-α (TNF-α), the protein expression levels of type Ⅲ collagen (Col Ⅲ), vasoactive intestinal peptide (VIP), and the phosphorylation level of protein kinase A (PKA) in parotid gland tissue were determined. RESULTS Compared with normal group, the levels of ROS, amylase, apoptosis rate, Bax expression level, mRNA expression levels of IL-6 and TNF- α, and protein expression level of Col Ⅲ in the radiation group were significantly increased, while the levels of cAMP, SOD, Bcl-2 expression level, VIP protein expression level and PKA phosphorylation level were significantly decreased (P<0.05). Compared with radiation group, the above indicators in the salidroside-L group and salidroside-H group were significantly improved (P<0.05), and the improvement in the salidroside-H group was more significant (P<0.05); inhibitor H-89 significantly reversed the changes in the above indicators of the salidroside-H group (P<0.05). CONCLUSIONS Salidroside can effectively alleviate radiation-induced parotid gland injury in rats, and its mechanism may be related to the activation of the VIP-cAMP pathway.
7.Computational pathology in precision oncology: Evolution from task-specific models to foundation models.
Yuhao WANG ; Yunjie GU ; Xueyuan ZHANG ; Baizhi WANG ; Rundong WANG ; Xiaolong LI ; Yudong LIU ; Fengmei QU ; Fei REN ; Rui YAN ; S Kevin ZHOU
Chinese Medical Journal 2025;138(22):2868-2878
With the rapid development of artificial intelligence, computational pathology has been seamlessly integrated into the entire clinical workflow, which encompasses diagnosis, treatment, prognosis, and biomarker discovery. This integration has significantly enhanced clinical accuracy and efficiency while reducing the workload for clinicians. Traditionally, research in this field has depended on the collection and labeling of large datasets for specific tasks, followed by the development of task-specific computational pathology models. However, this approach is labor intensive and does not scale efficiently for open-set identification or rare diseases. Given the diversity of clinical tasks, training individual models from scratch to address the whole spectrum of clinical tasks in the pathology workflow is impractical, which highlights the urgent need to transition from task-specific models to foundation models (FMs). In recent years, pathological FMs have proliferated. These FMs can be classified into three categories, namely, pathology image FMs, pathology image-text FMs, and pathology image-gene FMs, each of which results in distinct functionalities and application scenarios. This review provides an overview of the latest research advancements in pathological FMs, with a particular emphasis on their applications in oncology. The key challenges and opportunities presented by pathological FMs in precision oncology are also explored.
Humans
;
Precision Medicine/methods*
;
Medical Oncology/methods*
;
Artificial Intelligence
;
Neoplasms/pathology*
;
Computational Biology/methods*
8.Association between blood pressure response index and short-term prognosis of sepsis-associated acute kidney injury in adults.
Jinfeng YANG ; Jia YUAN ; Chuan XIAO ; Xijing ZHANG ; Jiaoyangzi LIU ; Qimin CHEN ; Fengming WANG ; Peijing ZHANG ; Fei LIU ; Feng SHEN
Chinese Critical Care Medicine 2025;37(9):835-842
OBJECTIVE:
To assess the relationship between blood pressure reactivity index (BPRI) and in-hospital mortality risk in patients with sepsis-associated acute kidney injury (SA-AKI).
METHODS:
A retrospective cohort study was conducted to collect data from patients admitted to the intensive care unit (ICU) and clinically diagnosed with SA-AKI between 2008 and 2019 in the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database in the United States. The collected data included demographic characteristics, comorbidities, vital signs, laboratory parameters, sequential organ failure assessment (SOFA) and simplified acute physiology scoreII(SAPSII) within 48 hours of SA-AKI diagnosis, stages of AKI, treatment regimens, mean BPRI during the first and second 24 hours (BPRI_0_24, BPRI_24_48), and outcome measures including primary outcome (in-hospital mortality) and secondary outcomes (ICU length of stay and total hospital length of stay). Variables with statistical significance in univariate analysis were included in LASSO regression analysis for variable selection, and the selected variables were subsequently incorporated into multivariate Logistic regression analysis to identify independent predictors associated with in-hospital mortality in SA-AKI patients. Restricted cubic spline (RCS) analysis was employed to examine whether there was a linear relationship between BPRI within 48 hours and in-hospital mortality in SA-AKI patients. Basic prediction models were constructed based on the independent predictors identified through multivariate Logistic regression analysis, and receiver operator characteristic curve (ROC curve) was plotted to evaluate the predictive performance of each basic prediction model before and after incorporating BPRI.
RESULTS:
A total of 3 517 SA-AKI patients admitted to the ICU were included, of whom 826 died during hospitalization and 2 691 survived. The BPRI values within 48 hours of SA-AKI diagnosis were significantly lower in the death group compared with the survival group [BPRI_0_24: 4.53 (1.81, 8.11) vs. 17.39 (5.16, 52.43); BPRI_24_48: 4.76 (2.42, 12.44) vs. 32.23 (8.85, 85.52), all P < 0.05]. LASSO regression analysis identified 20 variables with non-zero coefficients that were included in the multivariate Logistic regression analysis. The results showed that respiratory rate, temperature, pulse oxygen saturation (SpO2), white blood cell count (WBC), hematocrit (HCT), activated partial thromboplastin time (APTT), lactate, oxygenation index, SOFA score, fluid balance (FB), BPRI_0_24, and BPRI_24_48 were all independent predictors for in-hospital mortality in SA-AKI patients (all P < 0.05). RCS analysis revealed that both BPRI showed "L"-shaped non-linear relationships with the risk of in-hospital mortality in SA-AKI patients. When BPRI_0_24 ≤ 14.47 or BPRI_24_48 ≤ 24.21, the risk of in-hospital mortality in SA-AKI increased as BPRI values decreased. Three basic prediction models were constructed based on the identified independent predictors: Model 1 (physiological indicator model) included respiratory rate, temperature, SpO2, and oxygenation index; Model 2 (laboratory indicator model) included WBC, HCT, APTT, and lactate; Model 3 (scoring indicator model) included SOFA score and FB. ROC curve analysis showed that the predictive performance of the basic models ranked from high to low as follows: Model 3, Model 2, and Model 1, with area under the curve (AUC) values of 0.755, 0.661, and 0.655, respectively. The incorporation of BPRI indicators resulted in significant improvement in the discriminative ability of each model (all P < 0.05), with AUC values increasing to 0.832 for Model 3+BPRI, 0.805 for Model 2+BPRI, and 0.808 for Model 1+BPRI.
CONCLUSIONS
BPRI is an independent predictor factor for in-hospital mortality in SA-AKI patients. Incorporating BPRI into the prediction model for in-hospital mortality risk in SA-AKI can significantly improve its predictive capability.
Humans
;
Acute Kidney Injury/mortality*
;
Sepsis/complications*
;
Retrospective Studies
;
Hospital Mortality
;
Prognosis
;
Blood Pressure
;
Intensive Care Units
;
Male
;
Female
;
Length of Stay
;
Middle Aged
;
Aged
;
Adult
;
Logistic Models
9.Analysis of blood screening results for a case of HIV post-exposure prophylaxis failure: a 7-year follow-up study
Lilin WANG ; Fang ZHAO ; Lukun ZHANG ; Liqin HUANG ; Ran LI ; Rui ZHU ; Guochao WEI ; Jinfeng ZENG ; Rong XIA
Chinese Journal of Blood Transfusion 2025;38(11):1567-1572
Objective: To assess the impact of long-term antiretroviral therapy (ART) on human immunodeficiency virus (HIV) blood screening outcomes in post-exposure prophylaxis (PEP) failure cases through a longitudinal analysis of blood screening results over a 7-year period in a patient with HIV PEP failure. Methods: This study conducted 13 follow-up assessments for a high-risk individual who initiated ART shortly after exposure. The effectiveness of various blood screening methods, including immunological assays and nucleic acid testing (NAT), was analyzed. Blood samples were also tested with HIV RNA quantification testing, Western blot (WB) confirmation testing, chemiluminescence immunoassay (CLIA), and HIV rapid tests utilizing gold and selenium labels. A comprehensive analysis was performed to evaluate the changes in diagnostic capabilities of different testing methods for HIV biomarkers over an extended period following PEP failure. Results: The patient had two high-risk exposures: one day before ART initiation (BA1) and seven days preceding treatment (BA7). On the first day after the ART treatment (AA1), the HIV RNA concentration (viral load) was 9.07×10
copies/mL; by day five (AA5), the viral load decreased to 1.04×10
copies/mL. At day eleven (AA11), NAT and ELISA tests were both positive, with the WB result remaining indeterminate (gp160+). At day 48 (AA48), the S/CO value of the fourth generation ELISA reagent was 1.07, while results from a 6-sample pool and quantitative NAT were negative. However, a single sample NAT returned a positive result and WB tests indicated positivity for p17, p24, and gp160. At AA74, the quantitative NAT rebounded to 2.83×10
copies/mL, with positive NAT results for single and 6-sample pool NAT tests. The S/CO values of the imported and domestic ELISA reagents were 3.39 and 23.44, respectively. At AA201, 6-sample pool and quantitative NAT were negative again, while single sample NAT remained positive. From AA319 to AA2221, all NAT results have remained consistently below the minimum detection limit. At AA2221, S/CO values of the imported and domestic ELISA reagents were 3.47 and 23.44, respectively. Conclusion: The findings indicate that patients experiencing PEP failure after high-risk HIV exposure are at a higher risk of being missed by mixed-sample NAT pools and individual serological tests. Nonetheless, anti-HIV antibody levels are sustained at elevated values for an extended duration, underscoring antibody testing as an effective measure for blood screening.
10.Protective Effect of Liuwei Dihuangwan on Mitochondrial Damage in AD Model of Caenorhabditis Elegans
Jinfeng ZHANG ; Yuliang TONG ; Jiapeng WANG ; Ting SU ; Deping ZHAO ; Hao YU ; Kun ZUO ; Ziyue ZHU ; Meiling JIN ; Ning ZHANG ; Xia LEI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):18-25
ObjectiveTo investigate the protective effect of the extract of Liuwei Dihuangwan (LW) on mitochondrial damage in the Alzheimer's disease (AD) model of Caenorhabditis elegans (C. elegans). MethodC. elegans transfected with human β-amyloid protein (Aβ) 1-42 gene was used as an AD model. The rats were divided into blank group, model group, metformin group (50 mmol·L-1), and low, medium, and high dose (1.04, 2.08, 4.16 g·kg-1) LW groups. Behavioral methods were used to observe the sensitivity of 5-hydroxytryptamine (5-HT) in nematodes. Western blot was used to detect the expression of Aβ in nematodes. Total ATP content in nematodes was detected by the adenine nucleoside triphosphate (ATP) kit, and mitochondrial membrane potential was detected by the JC-1 method. In addition, the mRNA expression of Aβ expression gene (Amy-1), superoxide dismutase-1 (SOD-1), mitochondrial transcription factor A homologous gene-5 (HMG-5), mitochondrial power-associated protein 1 (DRP1), and mitochondrial mitoprotein 1 (FIS1) was detected by real-time fluorescence quantitative polymerase chain reaction (RT-PCR). ResultThe extract of LW could reduce the hypersensitivity of the AD model of nematodes to exogenous 5-HT (P<0.05) and delay the AD-like pathological characteristics of hypersensitivity to exogenous 5-HT caused by toxicity from overexpression of Aβ in neurons of the AD model of nematodes. Compared with the blank group, in the model group, the mRNA expression of Aβ protein and Amy-1 increased (P<0.01), and the mRNA expression of SOD-1 and HMG-5 decreased (P<0.01). The mRNA expression of DRP1 and FIS1 increased (P<0.01), and the level of mitochondrial membrane potential decreased (P<0.05). The content of ATP decreased (P<0.01). Compared with the model group, in the positive medicine group and medium and high dose LW groups, the mRNA expression of Aβ protein and Amy-1 decreased (P<0.05,P<0.01), and the mRNA expression of SOD-1 and HMG-5 increased (P<0.01). The mRNA expression of DRP1 decreased (P<0.05,P<0.01), and that of FIS1 decreased (P<0.01). The level of mitochondrial membrane potential increased (P<0.01), and the content of ATP increased (P<0.05,P<0.01). ConclusionThe extract of LW may enhance the antioxidant ability of mitochondria, protect mitochondrial DNA, reduce the fragmentation of mitochondrial division, repair the damaged mitochondria, adjust the mitochondrial membrane potential, restore the level of neuronal ATP, and reduce the neuronal damage caused by Aβ deposition.

Result Analysis
Print
Save
E-mail