1.Banxia Xiexin Tang Ameliorates Cognitive Dysfunction in Rat Model of Vascular Dementia via AGE/RAGE Pathway
Shuzhi LIANG ; Zhongmin ZHAO ; Suyu HOU ; Dandan LUO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):10-21
ObjectiveTo explore the mechanism by which Banxia Xiexin Tang (BXT) regulates the advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) signaling pathway to reduce neuroinflammatory responses and ameliorate cognitive dysfunction in the rat model of vascular dementia (VD). MethodsThe components of BXT were detected by ultra performance liquid chromatography-quadrupole -orbitrap-tandem mass spectrometry(UPLC-Q-Orbitrap-MS/MS), and the core components and key action pathways were screened out by network pharmacology and molecular docking. Sixty SPF-grade male SD rats were randomly allocated into the sham and modeling groups by the random number table method. The VD model was replicated by the modified bilateral occlusion of the common carotid arteries (2-VO) method. The successfully modeled rats were randomly allocated into the model, low-, medium-, and high-dose (3.748 5, 7.497, 14.994 g·kg-1) BXT (BXT-L, BXT-M, and BXT-H), and nimodipine (NMP, 0.002 7 g·kg-1) groups according to the random number table method. The rats in the drug intervention groups were administrated with corresponding drugs by gavage, and the sham and model groups received the same amount of normal saline for 14 consecutive days. The Morris water maze, Y-maze, and new object recognition experiments were conducted to evaluate the cognitive dysfunction of rats. Hematoxylin-eosin (HE) staining was used to evaluate the histopathological changes of the hippocampal tissue in rats. The mRNA levels of AGE, RAGE, and phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) in the hippocampal tissue of rats were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression of related proteins in the AGE/RAGE pathway in the hippocampal tissue of rats was determined by Western blot and immunohistochemistry (IHC). The levels of neurotransmitters and inflammatory mediators in the rat serum were measured by enzyme-linked immunosorbent assay (ELISA). ResultsThe chemical components of BXT were detected by UPLC-Q-Orbitrap-MS/MS. Network pharmacology and molecular docking identified the AGE/RAGE pathway as the key pathway. The results of the water maze, Y maze, and novel object recognition tests showed that compared with the sham group, the model group demonstrated prolonged successful latency and decreases in number of platform crossings, alternation rate, number of entries into the new arm, preference index, and discrimination index (P0.01). Compared with the model group, the BXT-H and BXT-M groups showed shortened successful latency (P0.01) and increases in number of platform crossings (P0.05), alternation rate (P0.01), number of entries into the new arm (P0.05), preference index (P0.01), and discrimination index (P0.01). HE results showed that compared with the sham group, the cells of model rats were loosely and disorderly arranged, and the nuclei were condensed. Compared with the model group, the pathological changes of the hippocampus in the BXT group were mitigated. Real-time PCR results showed that compared with the sham group, the model group presented up-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 in the hippocampus (P0.01), and compared with the model group, the BXT-H and BXT-M groups showcased down-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 (P0.01). Western blot results showed that compared with the sham group, the model group presented up-regulated expression of AGE, RAGE, p-NF-κB p65, and tumor necrosis factor-α (TNF-α) (P0.05), and compared with the model group, the BXT-H group presented down-regulated expression of AGE, RAGE, p-NF-κB p65, and TNF-α (P0.05). IHC results showed that compared with the sham group, the model group had increased expression of RAGE (P0.01), and compared with the model group, the BXT-H and BXT-M groups had reduced expression of RAGE (P0.01). ELISA results showed that compared with the sham group, the model group exhibited elevated levels of TNF-α and Interleukin-1β (IL-1β) and declined levels of acetylcholine (ACh) and dopamine (DA) in the serum (P0.01). Compared with the model group, the BXT-L, BXT-M, and BXT-H groups showed lowered levels of TNF-α and IL-1β in the serum (P0.05) and elevated levels of ACh and DA (P0.05). ConclusionBXT may ameliorate cognitive dysfunction in the rat model of VD by down-regulating the AGE/RAGE signaling pathway, reducing neuroinflammatory responses, and regulating neurotransmitter levels.
2.Protective Effect and Mechanisms of Taohong Siwutang Against Retinal Vasculitis Based on JAK2/STAT3 Signaling Pathway
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):49-56
ObjectiveBased on the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, this study explores the protective effect and mechanism of Taohong Siwutang against retinal vasculitis (RV) from the perspective of angiogenesis. MethodsSPF-grade C57BL/6J mice were used to establish a RV model induced by experimental autoimmune uveitis (EAU), and the protective effect of Taohong Siwutang on RV was investigated. Fifty mice were randomly assigned to a blank group, model group, and low-, medium-, and high-dose Taohong Siwutang groups (3.315、6.63、13.26 g·kg-1,10 mice in each group). After modeling, gavage administration was performed for 20 consecutive days. A small-animal retinal imaging system and fluorescein sodium angiography were used to observe pathological changes in the retinal tissue and vessels. Hematoxylin-eosin (HE) staining was used to assess retinal histopathological changes. Immunohistochemistry was performed to evaluate CD31-positive expression. Western blot was used to detect the protein expression levels of JAK2, phosphorylated (p)-JAK2, STAT3, p-STAT3, and vascular endothelial growth factor receptor 2 (VEGFR2) in retinal tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the relative expression level of VEGFR2 mRNA in retinal vessels. ResultsCompared with the blank group, the model group showed relative optic disc swelling, multiple areas of inflammatory cell infiltration around retinal veins with partial vascular occlusion, vessel thickening and morphological alterations, uneven retinal thickness, wrinkling and bending of inner and outer layers, vascular dilation, and disordered cellular arrangement. Compared with the model group, the Taohong Siwutang groups showed markedly reduced CD31-positive expression and effectively improved perivascular inflammatory infiltration, vascular tortuous dilation, angiogenesis, vascular occlusion, and hemorrhage. Western blot results showed that compared with the model group, the expression of VEGFR2 and the phosphorylation levels of JAK2 and STAT3 were significantly decreased in the Taohong Siwutang groups (P0.01). Real-time PCR results indicated that VEGFR2 mRNA expression was significantly decreased in the Taohong Siwutang groups compared with the model group (P0.05). ConclusionTaohong Siwutang can effectively alleviate angiogenesis in RV and, through the JAK2/STAT3 signaling pathway, reduce angiogenesis and improve retinal pathological injury, thereby exerting a protective effect on retinal vessels.
3.Traditional Chinese Medicine Against Insomnia by Regulating PI3K/Akt Signaling Pathway: A Review
Suyu HOU ; Dandan LUO ; Xiangye GAO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):284-293
Insomnia is a sleep disorder characterized by difficulty in falling asleep, sleep maintenance disorder and impaired daytime function. Its pathological mechanism involves multiple factors such as nerve excitability, circadian rhythm, cell apoptosis, oxidative stress injury. As a classical tyrosine kinase signaling pathway, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) triggers Akt phosphorylation cascade, inducing inflammatory response, apoptosis, autophagy, oxidative damage, nerve excitability, and circadian rhythm imbalance. Traditional Chinese medicine(TCM) can improve sleep by targeting the PI3K/Akt pathway. Based on this, this paper systematically reviews the research progress on the regulation of PI3K/Akt pathway by traditional Chinese medicine(TCM) for insomnia at home and abroad. These drugs can regulate neuronal excitability by regulating the PI3K/Akt pathway, affect the circadian rhythm, alleviate inflammation, apoptosis, autophagy and oxidative stress, and thus regulate sleep-wake. Furthermore, literature review indicates that the PI3K/Akt signaling pathway may represent a specific pathway underlying phlegm-turbidity disturbing the upper Jiao-type insomnia.
4.Banxia Xiexin Tang Ameliorates Cognitive Dysfunction in Rat Model of Vascular Dementia via AGE/RAGE Pathway
Shuzhi LIANG ; Zhongmin ZHAO ; Suyu HOU ; Dandan LUO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):10-21
ObjectiveTo explore the mechanism by which Banxia Xiexin Tang (BXT) regulates the advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) signaling pathway to reduce neuroinflammatory responses and ameliorate cognitive dysfunction in the rat model of vascular dementia (VD). MethodsThe components of BXT were detected by ultra performance liquid chromatography-quadrupole -orbitrap-tandem mass spectrometry(UPLC-Q-Orbitrap-MS/MS), and the core components and key action pathways were screened out by network pharmacology and molecular docking. Sixty SPF-grade male SD rats were randomly allocated into the sham and modeling groups by the random number table method. The VD model was replicated by the modified bilateral occlusion of the common carotid arteries (2-VO) method. The successfully modeled rats were randomly allocated into the model, low-, medium-, and high-dose (3.748 5, 7.497, 14.994 g·kg-1) BXT (BXT-L, BXT-M, and BXT-H), and nimodipine (NMP, 0.002 7 g·kg-1) groups according to the random number table method. The rats in the drug intervention groups were administrated with corresponding drugs by gavage, and the sham and model groups received the same amount of normal saline for 14 consecutive days. The Morris water maze, Y-maze, and new object recognition experiments were conducted to evaluate the cognitive dysfunction of rats. Hematoxylin-eosin (HE) staining was used to evaluate the histopathological changes of the hippocampal tissue in rats. The mRNA levels of AGE, RAGE, and phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) in the hippocampal tissue of rats were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression of related proteins in the AGE/RAGE pathway in the hippocampal tissue of rats was determined by Western blot and immunohistochemistry (IHC). The levels of neurotransmitters and inflammatory mediators in the rat serum were measured by enzyme-linked immunosorbent assay (ELISA). ResultsThe chemical components of BXT were detected by UPLC-Q-Orbitrap-MS/MS. Network pharmacology and molecular docking identified the AGE/RAGE pathway as the key pathway. The results of the water maze, Y maze, and novel object recognition tests showed that compared with the sham group, the model group demonstrated prolonged successful latency and decreases in number of platform crossings, alternation rate, number of entries into the new arm, preference index, and discrimination index (P<0.01). Compared with the model group, the BXT-H and BXT-M groups showed shortened successful latency (P<0.01) and increases in number of platform crossings (P<0.05), alternation rate (P<0.01), number of entries into the new arm (P<0.05), preference index (P<0.01), and discrimination index (P<0.01). HE results showed that compared with the sham group, the cells of model rats were loosely and disorderly arranged, and the nuclei were condensed. Compared with the model group, the pathological changes of the hippocampus in the BXT group were mitigated. Real-time PCR results showed that compared with the sham group, the model group presented up-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 in the hippocampus (P<0.01), and compared with the model group, the BXT-H and BXT-M groups showcased down-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 (P<0.01). Western blot results showed that compared with the sham group, the model group presented up-regulated expression of AGE, RAGE, p-NF-κB p65, and tumor necrosis factor-α (TNF-α) (P<0.05), and compared with the model group, the BXT-H group presented down-regulated expression of AGE, RAGE, p-NF-κB p65, and TNF-α (P<0.05). IHC results showed that compared with the sham group, the model group had increased expression of RAGE (P<0.01), and compared with the model group, the BXT-H and BXT-M groups had reduced expression of RAGE (P<0.01). ELISA results showed that compared with the sham group, the model group exhibited elevated levels of TNF-α and Interleukin-1β (IL-1β) and declined levels of acetylcholine (ACh) and dopamine (DA) in the serum (P<0.01). Compared with the model group, the BXT-L, BXT-M, and BXT-H groups showed lowered levels of TNF-α and IL-1β in the serum (P<0.05) and elevated levels of ACh and DA (P<0.05). ConclusionBXT may ameliorate cognitive dysfunction in the rat model of VD by down-regulating the AGE/RAGE signaling pathway, reducing neuroinflammatory responses, and regulating neurotransmitter levels.
5.Protective Effect and Mechanisms of Taohong Siwutang Against Retinal Vasculitis Based on JAK2/STAT3 Signaling Pathway
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):49-56
ObjectiveBased on the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, this study explores the protective effect and mechanism of Taohong Siwutang against retinal vasculitis (RV) from the perspective of angiogenesis. MethodsSPF-grade C57BL/6J mice were used to establish a RV model induced by experimental autoimmune uveitis (EAU), and the protective effect of Taohong Siwutang on RV was investigated. Fifty mice were randomly assigned to a blank group, model group, and low-, medium-, and high-dose Taohong Siwutang groups (3.315、6.63、13.26 g·kg-1,10 mice in each group). After modeling, gavage administration was performed for 20 consecutive days. A small-animal retinal imaging system and fluorescein sodium angiography were used to observe pathological changes in the retinal tissue and vessels. Hematoxylin-eosin (HE) staining was used to assess retinal histopathological changes. Immunohistochemistry was performed to evaluate CD31-positive expression. Western blot was used to detect the protein expression levels of JAK2, phosphorylated (p)-JAK2, STAT3, p-STAT3, and vascular endothelial growth factor receptor 2 (VEGFR2) in retinal tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the relative expression level of VEGFR2 mRNA in retinal vessels. ResultsCompared with the blank group, the model group showed relative optic disc swelling, multiple areas of inflammatory cell infiltration around retinal veins with partial vascular occlusion, vessel thickening and morphological alterations, uneven retinal thickness, wrinkling and bending of inner and outer layers, vascular dilation, and disordered cellular arrangement. Compared with the model group, the Taohong Siwutang groups showed markedly reduced CD31-positive expression and effectively improved perivascular inflammatory infiltration, vascular tortuous dilation, angiogenesis, vascular occlusion, and hemorrhage. Western blot results showed that compared with the model group, the expression of VEGFR2 and the phosphorylation levels of JAK2 and STAT3 were significantly decreased in the Taohong Siwutang groups (P0.01). Real-time PCR results indicated that VEGFR2 mRNA expression was significantly decreased in the Taohong Siwutang groups compared with the model group (P0.05). ConclusionTaohong Siwutang can effectively alleviate angiogenesis in RV and, through the JAK2/STAT3 signaling pathway, reduce angiogenesis and improve retinal pathological injury, thereby exerting a protective effect on retinal vessels.
6.Traditional Chinese Medicine Against Insomnia by Regulating PI3K/Akt Signaling Pathway: A Review
Suyu HOU ; Dandan LUO ; Xiangye GAO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):284-293
Insomnia is a sleep disorder characterized by difficulty in falling asleep, sleep maintenance disorder and impaired daytime function. Its pathological mechanism involves multiple factors such as nerve excitability, circadian rhythm, cell apoptosis, oxidative stress injury. As a classical tyrosine kinase signaling pathway, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) triggers Akt phosphorylation cascade, inducing inflammatory response, apoptosis, autophagy, oxidative damage, nerve excitability, and circadian rhythm imbalance. Traditional Chinese medicine(TCM) can improve sleep by targeting the PI3K/Akt pathway. Based on this, this paper systematically reviews the research progress on the regulation of PI3K/Akt pathway by traditional Chinese medicine(TCM) for insomnia at home and abroad. These drugs can regulate neuronal excitability by regulating the PI3K/Akt pathway, affect the circadian rhythm, alleviate inflammation, apoptosis, autophagy and oxidative stress, and thus regulate sleep-wake. Furthermore, literature review indicates that the PI3K/Akt signaling pathway may represent a specific pathway underlying phlegm-turbidity disturbing the upper Jiao-type insomnia.
7.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
8.Effect of Epimedium brevicornu Ethanol Extract on Aging of Castrated Rats by Intervening in Mesenchymal Adipose-derived Stem Cells
Zuyu MENG ; Haiquan LIU ; Shaozi LIN ; Mei WANG ; Yiyao ZHANG ; Fang LIU ; Menghan LI ; Hongling CHEN ; Jiajia QIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):174-181
ObjectiveTo explore the mechanism by which the ethanol extract of Epimedium brevicornu (EEBM) intervenes in mesenchymal adipose-derived stem cells (ADSCs) to delay aging in castrated rats. MethodsForty-five 3-month-old SPF female SD rats were ovariectomized and randomly divided into model group, ADSCs treatment group, and ADSCs groups treated with low, medium, and high concentrations of EEBM (1, 50, 100 μg·L-1), referred to as the AE low, medium, and high concentration groups, with 9 rats in each group. After tail vein injection of 200 μL of the corresponding stem cell suspension, aging-related indicators including cyclin-dependent kinase inhibitor (p21), tumor suppressor gene (p53), interleukin-6 (IL-6), interleukin-8 (IL-8), superoxide dismutase (SOD), malondialdehyde (MDA), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), cysteine-aspartic acid protease-3 (Caspase-3), and lipofuscin were measured using enzyme-linked immunosorbent assay (ELISA) and Western blot. ResultsCompared with the model group, the IL-6 content in the AE low, medium, and high concentration groups was significantly decreased (P<0.05). Lipofuscin, MDA, and IL-8 levels in the ADSCs treatment group and AE low, medium, and high concentration groups were significantly reduced (P<0.01), while SOD content was significantly increased (P<0.05, P<0.01). Compared with the ADSCs treatment group, lipofuscin and IL-8 levels in the AE low, medium, and high concentration groups were significantly reduced (P<0.05, P<0.01). The MDA content was significantly decreased in the AE medium concentration group (P<0.01). Compared with the model group, protein levels of p21, p53, Bax, and Caspase-3 in the ADSCs treatment group and AE low, medium, and high concentration groups were significantly reduced (P<0.05, P<0.01), while the Bcl-2 protein level was significantly increased (P<0.01). Compared with the ADSCs treatment group, protein levels of p21, p53, Bax, and Caspase-3 in the AE low, medium, and high concentration groups were significantly reduced (P<0.05, P<0.01), and the Bcl-2 protein level in the AE low concentration group was significantly increased (P<0.01). ConclusionThe results of this experiment show that EEBM-treated ADSCs or ADSCs may delay aging in castrated rats by inhibiting cell apoptosis, reducing cell cycle inhibitors and pro-inflammatory factors, enhancing antioxidant capacity, and reducing oxidative reactions. Moreover, EEBM-treated ADSCs demonstrate stronger anti-aging effects than ADSCs alone. This study provides experimental evidence supporting the clinical use of EEBM to intervene in ADSCs and delay aging.
9.Research advances in the association of adipokines with metabolic associated fatty liver disease and its associated liver cancer
Yixiao ZHANG ; Jianguang SUN ; Bowen JIANG
Journal of Clinical Hepatology 2025;41(1):151-158
With the emergence of unhealthy dietary structures in people’s life, metabolic associated fatty liver disease (MAFLD) has gradually become the most important chronic liver disease in China, and there is also a gradual increase in the cases of MAFLD-associated liver cancer. Adipose tissue not only has the function of energy storage, but also secretes adipokines that play an important role in the development and progression of MAFLD and its associated liver cancer. Studies on the mechanism of adipokines have provided important help for the prevention and treatment of MAFLD, and a large number of studies have shown that the abnormal secretion of adipokines is associated with MAFLD and plays an important regulatory role in the development and progression of liver cancer. Adipokines are not only regulated at the gene level, but they can also interact with genes through specific pathways to co-regulate pathophysiological processes such as inflammation, metabolism, immunity, and cell proliferation in MAFLD and its associated liver cancer. This article reviews the latest studies on the association of adipokines with MAFLD and its associated liver cancer, in order to provide new directions for further research on the pathogenesis of liver cancer.
10.Research advances in liver venous deprivation
Bensong HE ; Ming XIAO ; Qijia ZHANG ; Canhong XIANG ; Yanxiong WANG ; Yingbo LI ; Zhishuo WANG
Journal of Clinical Hepatology 2025;41(1):183-188
Portal vein embolization (PVE) can induce atrophy of the embolized lobe and compensatory regeneration of the non-embolized lobe. However, due to inadequate regeneration of future liver remnant (FLR) after PVE, some patients remain unsuitable for hepatectomy after PVE. In recent years, liver venous deprivation (LVD), which combines PVE with hepatic vein embolization (HVE), has induced enhanced FLR regeneration. Compared with associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), LVD triggers faster and more robust FLR regeneration, with lower incidence rate of postoperative complications and mortality rate. By reviewing related articles on LVD, this article introduces the effectiveness of LVD and analyzes the differences and safety of various technical paths, and it is believed that LVD is a safe and effective preoperative pretreatment method.

Result Analysis
Print
Save
E-mail