1.Antibiotic resistance and molecular typing of Campylobacter spp. from diarrheal patients in Baoshan District of Shanghai, 2019‒2022
Na NIU ; Shiyong CUI ; Junqing SHEN ; Xu ZHANG ; Min JIN ; Xiaode TANG
Shanghai Journal of Preventive Medicine 2025;37(6):490-495
ObjectiveTo analyze the drug resistance and the molecular typing characteristics through pulsed field gel electrophoresis (PFGE) of Campylobacter spp. isolated from patients with infectious diarrhea in Baoshan District of Shanghai, and to provide a basis for Campylobacter spp. prevention and control and clinical medication. MethodsCampylobacter spp. was isolated, cultured and identified from stool samples of diarrheal patients collected from medical institutions at two monitoring sites in Baoshan District from 2019 to 2022. Antimicrobial susceptibility testing for 12 antibiotics was conducted on the isolated Campylobacter jejuni (C. jejuni) and Campylobacter. Coli (C. coli), and molecular typing was performed using PFGE. ResultsA total of 179 strains of Campylobacter spp. were isolated from 1 786 samples of diarrheal patients, with a positive rate of 10.02%. The highest resistance rate of C. jejuni was to ciprofloxacin (98.63%), followed by tetracycline (97.26%) and nalidixic acid (89.73%). C. coli was completely resistant to ciprofloxacin and nalidixic acid (100.00%), followed by tetracycline (90.91%). The multidrug resistance rates of C. jejuni and C. coli were 89.73% and 100.00%, respectively. 142 strains of C. jejuni produced 122 PFGE bands, while 33 strains of C. coli produced 33 PFGE bands, and the distribution of the bands was relatively dispersed. ConclusionFrom 2019 to 2022, the detection rate of Campylobacter in diarrheal patients was relatively high in Baoshan District of Shanghai, the multidrug resistance rate of Campylobacter isolates from diarrheal patients was relatively serious, in addition, the drug resistance pattern was complex, and the PFGE band pattern displayed a polymorphic distribution.
2.Serological and molecular biological analysis of a rare Dc- variant individual
Xue TIAN ; Hua XU ; Sha YANG ; Suili LUO ; Qinqin ZUO ; Liangzi ZHANG ; Xiaoyue CHU ; Jin WANG ; Dazhou WU ; Na FENG
Chinese Journal of Blood Transfusion 2025;38(8):1101-1106
Objective: To reveal the molecular biological mechanism of a rare Dc-variant individual using PacBio third-generation sequencing technology. Methods: ABO and Rh blood type identification, DAT, unexpected antibody screening and D antigen enhancement test were conducted by serological testing. The absorption-elution test was used to detect the e antigen. RHCE gene typing was performed by PCR-SSP, and the 1-10 exons of RHCE were sequenced by Sanger sequencing. The full-length sequences of RHCE, RHD and RHAG were detected by PacBio third-generation sequencing technology. Results: Serological findings: Blood type O, Dc-phenotype, DAT negative, unexpected antibody screening negative; enhanced D antigen expression; no detection of e antigen in the absorption-elution test. PCR-SSP genotyping indicated the presence of only the RHCE
c allele. Sanger sequencing results: Exons 5-9 of RHCE were deleted, exon 1 had a heterozygous mutation at c. 48G/C, and exon 2 had five heterozygous mutations at c. 150C/T, c. 178C/A, c. 201A/G, c. 203A/G and c. 307C/T. Third-generation sequencing results: RHCE genotype was RHCE
02N. 08/RHCE-D(5-9)-CE; RHD genotype was RHD
01/RHD
01; RHAG genotype was RHAG
01/RHAG
01 (c. 808G>A and c. 861G>A). Conclusion: This Dc-individual carries the allele RHCE
02N. 08 and the novel allele RHCE-D(5-9)-CE. The findings of this study provide data support and a theoretical basis for elucidating the molecular mechanisms underlying RhCE deficiency phenotypes.
3.Intermittent fasting ameliorates rheumatoid arthritis by harassing deregulated synovial fibroblasts.
Lei LI ; Jin DONG ; Yumu ZHANG ; Chen ZHAO ; Wen WEI ; Xueqin GAO ; Yao YU ; Meilin LU ; Qiyuan SUN ; Yuwei CHEN ; Xuehua JIAO ; Jie LU ; Na YUAN ; Yixuan FANG ; Jianrong WANG
Chinese Medical Journal 2025;138(23):3201-3203
4.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
5.Identification of terpenoid synthases family in Perilla frutescens and functional analysis of germacrene D synthase.
Pei-Na ZHOU ; Zai-Biao ZHU ; Lei XIONG ; Ying ZHANG ; Peng CHEN ; Huang-Jin TONG ; Cheng-Hao FEI
China Journal of Chinese Materia Medica 2025;50(10):2658-2673
Based on whole-genome identification of the TPS gene family in Perilla frutescens and screening, cloning, bioinformatics, and expression analysis of the synthetic enzyme for the insect-resistant component germacrene D, this study lays the foundation for understanding the biological function of the TPS gene family and the insect resistance mechanism in P. frutescens. This study used bioinformatics tools to identify the TPS gene family of P. frutescens based on its whole genome and predicted the physicochemical properties, systematic classification, and promoter cis-elements of the proteins. The relative content of germacrene D was detected in both normal and insect-infested leaves of P. frutescens, and the germacrene D synthase was screened and isolated. Gene cloning, bioinformatics analysis, and expression profiling were then performed. The results showed that a total of 99 TPS genes were identified in the genome, which were classified into the TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g subfamilies. Conserved motif analysis showed that the TPS in P. frutescens has conserved structural characteristics within the same subfamily. Promoter cis-element analysis predicted the presence of light-responsive elements, multiple hormone-responsive elements, and stress-responsive elements in the TPS family of P. frutescens. Transcriptome data revealed that most of the TPS genes in P. frutescens were highly expressed in the leaves. GC-MS analysis showed that the relative content of germacrene D significantly increased in insect-damaged leaves, suggesting that it may act as an insect-resistant component. The germacrene D synthase gene was screened through homologous protein binding gene expression and was found to belong to the TPS-a subfamily, encoding a 64.89 kDa protein. This protein was hydrophilic, lacked a transmembrane structure and signal peptide, and was predominantly expressed in leaves, with significantly higher expression in insect-damaged leaves compared to normal leaves. In vitro expression results showed that germacrene D synthase tended to form inclusion bodies. Molecular docking showed that farnesyl pyrophosphate(FPP) fell into the active pocket of the protein and interacted strongly with six active sites. This study provides a foundation for further research on the biological functions of the TPS gene family in P. frutescens and the molecular mechanisms underlying its insect resistance.
Perilla frutescens/chemistry*
;
Plant Proteins/chemistry*
;
Multigene Family
;
Sesquiterpenes, Germacrane/metabolism*
;
Alkyl and Aryl Transferases/chemistry*
;
Phylogeny
;
Gene Expression Regulation, Plant
6.Genetic screening and follow-up results in 3 001 newborns in the Yunnan region.
Ao-Yu LI ; Bao-Sheng ZHU ; Jin-Man ZHANG ; Ying CHAN ; Jun-Yue LIN ; Jie ZHANG ; Xiao-Yan ZHOU ; Hong CHEN ; Su-Yun LI ; Na FENG ; Yin-Hong ZHANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):654-660
OBJECTIVES:
To evaluate the application value of genetic newborn screening (gNBS) in the Yunnan region.
METHODS:
A prospective study was conducted with a random selection of 3 001 newborns born in the Yunnan region from February to December 2021. Traditional newborn screening (tNBS) was used to test biochemical indicators, and targeted next-generation sequencing was employed to screen 159 genes related to 156 diseases. Positive-screened newborns underwent validation and confirmation tests, and confirmed cases received standardized treatment and long-term follow-up.
RESULTS:
Among the 3 001 newborns, 166 (5.53%) were initially positive for genetic screening, and 1 435 (47.82%) were genetic carriers. The top ten genes with the highest variation frequency were GJB2 (21.29%), DUOX2 (7.27%), HBA (6.14%), GALC (3.63%), SLC12A3 (3.33%), HBB (3.03%), G6PD (2.94%), SLC25A13 (2.90%), PAH (2.73%), and UNC13D (2.68%). Among the initially positive newborns from tNBS and gNBS, 33 (1.10%) and 47 (1.57%) cases were confirmed, respectively. A total of 48 (1.60%) cases were confirmed using gNBS+tNBS. The receiver operating characteristic curve analysis demonstrated that the areas under the curve for tNBS, gNBS, and gNBS+tNBS in diagnosing diseases were 0.866, 0.982, and 0.968, respectively (P<0.05). DeLong's test showed that the area under the curve for gNBS and gNBS+tNBS was higher than that for tNBS (P<0.05).
CONCLUSIONS
gNBS can expand the range of disease detection, and its combined use with tNBS can significantly shorten diagnosis time, enabling early intervention and treatment.
Humans
;
Infant, Newborn
;
Neonatal Screening
;
Genetic Testing
;
Female
;
Male
;
Follow-Up Studies
;
Prospective Studies
;
China
7.Exploring the causal relationship between leukocyte telomere length and prostatitis, orchitis, and epididymitis based on a two-sample Mendelian randomization.
Dan-Yang LI ; Shun YU ; Bo-Hui YANG ; Jun-Bao ZHANG ; Guo-Chen YIN ; Lin-Na WU ; Qin-Zuo DONG ; Jin-Long XU ; Shu-Ping NING ; Rong ZHAO
National Journal of Andrology 2025;31(4):306-312
OBJECTIVE:
To investigate the genetic causal relationship of leukocyte telomere length (LTL) with prostatitis, orchitis and epididymitis by two-sample Mendelian randomization (MR).
METHODS:
Using LTL as the exposure factor and prostatitis, orchitis and epididymitis as outcome factors, we mined the Database of Genome-Wide Association Studies (GWAS). Then, we analyzed the causal relationship of LTL with prostatitis, orchitis and epididymitis by Mendelian randomization using inverse variance weighting (IVW) as the main method and weighted median and MR-Egger regression as auxiliary methods, determined the horizontal multiplicity by MR-Egger intercept test, and conducted sensitivity analysis using the leaving-one-out method.
RESULTS:
A total of 121 related single nucleotide polymorphisms (SNPs) were identified in this study. IVW showed LTL to be a risk factor for prostatitis (OR = 1.383, 95% CI: 1.044-1.832, P = 0.024), and for orchitis and epididymitis as well (OR = 1.770, 95% CI: 1.275-2.456, P = 0.000 6).
CONCLUSION
Genetic evidence from Mendelian randomized analysis indicates that shortening of LTL reduces the risk of prostatitis, orchitis and epididymitis.
Humans
;
Male
;
Mendelian Randomization Analysis
;
Epididymitis/genetics*
;
Prostatitis/genetics*
;
Polymorphism, Single Nucleotide
;
Leukocytes
;
Orchitis/genetics*
;
Genome-Wide Association Study
;
Telomere
;
Risk Factors
8.Developing a polygenic risk score for pelvic organ prolapse: a combined risk assessment approach in Chinese women.
Xi CHENG ; Lei LI ; Xijuan LIN ; Na CHEN ; Xudong LIU ; Yaqian LI ; Zhaoai LI ; Jian GONG ; Qing LIU ; Yuling WANG ; Juntao WANG ; Zhijun XIA ; Yongxian LU ; Hangmei JIN ; Xiaowei ZHANG ; Luwen WANG ; Juan CHEN ; Guorong FAN ; Shan DENG ; Sen ZHAO ; Lan ZHU
Frontiers of Medicine 2025;19(4):665-674
Pelvic organ prolapse (POP), whose etiology is influenced by genetic and clinical risk factors, considerably impacts women's quality of life. However, the genetic underpinnings in non-European populations and comprehensive risk models integrating genetic and clinical factors remain underexplored. This study constructed the first polygenic risk score (PRS) for POP in the Chinese population by utilizing 20 disease-associated variants from the largest existing genome-wide association study. We analyzed a discovery cohort of 576 cases and 623 controls and a validation cohort of 264 cases and 200 controls. Results showed that the case group exhibited a significantly higher PRS than the control group. Moreover, the odds ratio of the top 10% risk group was 2.6 times higher than that of the bottom 10%. A high PRS was significantly correlated with POP occurrence in women older than 50 years old and in those with one or no childbirths. As far as we know, the integrated prediction model, which combined PRS and clinical risk factors, demonstrated better predictive accuracy than other existing PRS models. This combined risk assessment model serves as a robust tool for POP risk prediction and stratification, thereby offering insights into individualized preventive measures and treatment strategies in future clinical practice.
Humans
;
Female
;
Pelvic Organ Prolapse/epidemiology*
;
Middle Aged
;
Risk Assessment/methods*
;
China/epidemiology*
;
Multifactorial Inheritance
;
Aged
;
Risk Factors
;
Genome-Wide Association Study
;
Genetic Predisposition to Disease
;
Case-Control Studies
;
Adult
;
Polymorphism, Single Nucleotide
;
Genetic Risk Score
;
East Asian People
9.Thermal sensitization of acupoints in patients with knee osteoarthritis: A cross-sectional case-control study.
Jian-Feng TU ; Xue-Zhou WANG ; Shi-Yan YAN ; Yi-Ran WANG ; Jing-Wen YANG ; Guang-Xia SHI ; Wen-Zheng ZHANG ; Li-Na JIN ; Li-Sha YANG ; Dong-Hua LIU ; Li-Qiong WANG ; Bao-Hong MI
Journal of Integrative Medicine 2025;23(3):289-296
OBJECTIVE:
Varied acupoint selections represent a potential cause of the uncertainty surrounding the efficacy of acupuncture for knee osteoarthritis (OA). Skin temperature, a guiding factor for acupoint selection, may help to address this issue. This study explored thermal sensitization of acupoints used for the treatment of knee OA.
METHODS:
This cross-sectional case-control study enrolled cases aged 45-75 years with symptomatic knee OA and age- and gender-matched non-knee OA controls in a 1:1 ratio. All participants underwent infrared thermographic imaging. The primary outcome was the relative skin temperature of acupoint (STA), and the secondary outcome was the absolute STA of 11 acupoints. The Z test was used to compare the relative and absolute STAs between the groups. Principal component analysis was used to extract the common factors (CFs, acupoint cluster) in the STAs. A general linear model was used to identify factors affecting the STA in the knee OA cases. For the group comparisons of relative STA, P < 0.0045 (adjusted for 11 acupoints through Bonferroni correction) was considered to indicate statistical significance. For other analyses, P < 0.05 was used as the threshold for statistical significance.
RESULTS:
The analysis included 308 participants, consisting of 151 cases (mean age: [64.58 ± 6.67] years; male: 25.83%; mean body mass index: [25.70 ± 3.16] kg/m2) and 157 controls (mean age: [63.37 ± 5.96] years; male: 26.11%; mean body mass index: [24.47 ± 2.84] kg/m2). The relative STAs of ST34 (P = 0.0001), EX-LE2 (P < 0.0001), EX-LE5 (P = 0.0006), SP10 (P < 0.0001), BL40 (P = 0.0012) and GB39 (P = 0.0037) were higher in the knee OA group. No difference was found in the STAs of ST35, ST36, SP9, GB33 and GB34. Four CFs were identified for relative STA in both groups. The acupoints within each CF were consistent between the groups. The mean values of the relative STAs across each CF were higher in the knee OA group. In the knee OA cases, no factors were observed to affect the relative STA, while age and gender were found to affect the absolute STA.
CONCLUSION
Among patients with knee OA, thermal sensitization occurs in the acupoints of the lower extremity, exhibiting localized and regional thermal consistencies. The thermally sensitized acupoints that we identified in this study, ST34, SP10, EX-LE2, EX-LE5, GB39 and BL40, may be good choices for the acupuncture treatment of knee OA. Please cite this article as: Tu JF, Wang XZ, Yan SY, Wang YR, Yang JW, Shi GX, Zhang WZ, Jing LN, Yang LS, Liu DH, Wang LQ, Mi BH. Thermal sensitization of acupoints in patients with knee osteoarthritis: A cross-sectional case-control study. J Integr Med. 2025; 23(3): 289-296.
Humans
;
Osteoarthritis, Knee/physiopathology*
;
Male
;
Cross-Sectional Studies
;
Middle Aged
;
Female
;
Acupuncture Points
;
Case-Control Studies
;
Aged
;
Skin Temperature
;
Acupuncture Therapy
10.Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway.
An-Na XIE ; Sun-Zheng-Yuan ZHANG ; Yu ZHANG ; Jin-Long CAO ; Cheng-Long WANG ; Li-Bo WANG ; Hong-Jin WU ; Jie ZHANG ; Wei-Wei DAI
Journal of Integrative Medicine 2025;23(6):670-682
OBJECTIVE:
Glucocorticoid-induced osteoporosis (GIOP) is a common complication of prolonged glucocorticoid therapy. Chlorogenic acid (CGA), a polyphenol with antioxidant properties that is extracted from traditional Chinese medicines such as Eucommiae Cortex, has potential anti-osteoporotic activity. This study aimed to investigate the possible effects of CGA on GIOP in mice and murine long bone osteocyte Y4 (MLO-Y4) cells and explore the underlying molecular mechanisms.
METHODS:
The protective effects of CGA were initially evaluated in the GIOP mouse model induced by dexamethasone (Dex). The micro-computed tomography, hematoxylin-eosin staining, silver nitrate staining, and serum detection were used to assess the efficacy of CGA for improving bone formation in vivo. Then, network pharmacology analysis was used to predict the potential targets and molecular mechanisms underlying the therapeutic efficacy of CGA against GIOP. After that, 2',7'-dichlorofluorescein diacetate staining, flow cytometry, real-time quantitative reverse transcription polymerase chain reaction, and Western blotting were used to verify the mechanisms of CGA against GIOP in vitro.
RESULTS:
Animal experiments showed that CGA treatment effectively attenuated Dex-induced decreases in bone mass and strength and improved disrupted osteocyte morphology in mice. The protein-protein interaction analysis highlighted erb-b2 receptor tyrosine kinase (ERBB2), which is also known as human epidermal growth factor receptor 2 (HER2), caspase-3, kinase insert domain receptor, matrix metallopeptidase 9, matrix metallopeptidase 2, proto-oncogene tyrosine-protein kinase Src, and epidermal growth factor receptor as core targets. The Kyoto Encyclopedia of Genes and Genomes analysis revealed several significantly enriched pathways (P < 0.05), including the ERBB, phosphoinositide 3 kinase-AKT serine/threonine kinase 1 (AKT), and mechanistic target of rapamycin kinase (mTOR) pathways. Cellular experiments verified that CGA enhanced bone formation and promoted autophagy while inhibiting apoptosis in MLO-Y4 cells exposed to Dex, which was associated with the upregulated expression of HER2 and activation of the HER2/AKT/mTOR signaling pathway.
CONCLUSION
CGA exerted anti-osteoporotic effects against GIOP, partially through targeting osteocytes and modulating the HER2/AKT/mTOR signaling pathway. Please cite this article as: Xie AN, Zhang SZY, Zhang Y, Cao JL, Wang CL, Wang LB, Wu HJ, Zhang J, Dai WW. Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway. J Integr Med. 2025; 23(6):670-682.
Animals
;
Chlorogenic Acid/therapeutic use*
;
Osteoporosis/metabolism*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Mice
;
Glucocorticoids/adverse effects*
;
Receptor, ErbB-2/metabolism*
;
Proto-Oncogene Mas
;
Dexamethasone/adverse effects*
;
Osteocytes/drug effects*
;
Osteogenesis/drug effects*
;
Male
;
Cell Line
;
Mice, Inbred C57BL
;
Humans

Result Analysis
Print
Save
E-mail