1.Analysis of human parvovirus B19 nucleic acid detection in blood products in China
Yue WANG ; Xiaobei ZHENG ; Qin GONG ; Ying ZHAO ; Yuanxiu LUO ; Dandan YANG ; Linlin ZHANG ; Zheng JIANG ; Gan PENG ; Jin ZHANG ; Bingbing KE
Chinese Journal of Blood Transfusion 2025;38(7):950-957
Objective: To analyze the nucleic acid load of human parvovirus B19 in major commercially available blood products in China, including human albumin, human intravenous immunoglobulin, human rabies immunoglobulin and various coagulation factor products, aiming to provide evidence for improving blood product manufacturing processes and quality control of source plasma. Methods: A total of 98 batches of coagulation factor products were tested for human parvovirus B19 nucleic acid using real-time fluorescent quantitative PCR, including 42 batches of human prothrombin complex, 35 batches of human coagulation factor Ⅷ, and 21 batches of human fibrinogen. Additionally, 6 batches of human albumin, 6 batches of human intravenous immunoglobulin, and 38 batches of human rabies immunoglobulin were tested for human parvovirus B19 nucleic acid. Results: Human parvovirus B19 nucleic acid were undetectable in human albumin, human intravenous immunoglobulin and human rabies immunoglobulin. Among the 98 batches of coagulation factor products tested for human parvovirus B19 nucleic acid, B19 nucleic acid reactivity rate was 69.0% (29/42) for human prothrombin complex batches, but nucleic acid concentration were all significantly lower than 10
IU/mL. The reactivity rate of B19 nucleic acid in 35 batches of human coagulation factor Ⅷ was 48.6% (17/35), with nucleic acid concentration all below 10
IU/mL. The reactivity rate of B19 nucleic acid in 21 batches of human fibrinogen was 61.9% (13/21), with nucleic acid concentration all below 10
IU/mL. Conclusion: No human parvovirus B19 has been detected in human albumin, human intravenous immunoglobulin, or human rabies immunoglobulin. Human parvovirus B19 nucleic acid may exist in commercially available coagulation factor products, highlighting the need for enhanced screening of human parvovirus B19 nucleic acid in these products. It is also recommended that B19 viral nucleic acid testing be conducted on source plasma, particularly for coagulation factor products.
2.Analysis of human parvovirus B19 nucleic acid detection in blood products in China
Yue WANG ; Xiaobei ZHENG ; Qin GONG ; Ying ZHAO ; Yuanxiu LUO ; Dandan YANG ; Linlin ZHANG ; Zheng JIANG ; Gan PENG ; Jin ZHANG ; Bingbing KE
Chinese Journal of Blood Transfusion 2025;38(7):950-957
Objective: To analyze the nucleic acid load of human parvovirus B19 in major commercially available blood products in China, including human albumin, human intravenous immunoglobulin, human rabies immunoglobulin and various coagulation factor products, aiming to provide evidence for improving blood product manufacturing processes and quality control of source plasma. Methods: A total of 98 batches of coagulation factor products were tested for human parvovirus B19 nucleic acid using real-time fluorescent quantitative PCR, including 42 batches of human prothrombin complex, 35 batches of human coagulation factor Ⅷ, and 21 batches of human fibrinogen. Additionally, 6 batches of human albumin, 6 batches of human intravenous immunoglobulin, and 38 batches of human rabies immunoglobulin were tested for human parvovirus B19 nucleic acid. Results: Human parvovirus B19 nucleic acid were undetectable in human albumin, human intravenous immunoglobulin and human rabies immunoglobulin. Among the 98 batches of coagulation factor products tested for human parvovirus B19 nucleic acid, B19 nucleic acid reactivity rate was 69.0% (29/42) for human prothrombin complex batches, but nucleic acid concentration were all significantly lower than 10
IU/mL. The reactivity rate of B19 nucleic acid in 35 batches of human coagulation factor Ⅷ was 48.6% (17/35), with nucleic acid concentration all below 10
IU/mL. The reactivity rate of B19 nucleic acid in 21 batches of human fibrinogen was 61.9% (13/21), with nucleic acid concentration all below 10
IU/mL. Conclusion: No human parvovirus B19 has been detected in human albumin, human intravenous immunoglobulin, or human rabies immunoglobulin. Human parvovirus B19 nucleic acid may exist in commercially available coagulation factor products, highlighting the need for enhanced screening of human parvovirus B19 nucleic acid in these products. It is also recommended that B19 viral nucleic acid testing be conducted on source plasma, particularly for coagulation factor products.
3.Prediction of Pulmonary Nodule Progression Based on Multi-modal Data Fusion of CCNet-DGNN Model
Lehua YU ; Yehui PENG ; Wei YANG ; Xinghua XIANG ; Rui LIU ; Xiongjun ZHAO ; Maolan AYIDANA ; Yue LI ; Wenyuan XU ; Min JIN ; Shaoliang PENG ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):135-143
ObjectiveThis study aims to develop and validate a novel multimodal predictive model, termed criss-cross network(CCNet)-directed graph neural network(DGNN)(CGN), for accurate assessment of pulmonary nodule progression in high-risk individuals for lung cancer, by integrating longitudinal chest computed tomography(CT) imaging with both traditional Chinese and western clinical evaluation data. MethodsA cohort of 4 432 patients with pulmonary nodules was retrospectively analyzed. A twin CCNet was employed to extract spatiotemporal representations from paired sequential CT scans. Structured clinical assessment and imaging-derived features were encoded via a multilayer perceptron, and a similarity-based alignment strategy was adopted to harmonize multimodal imaging features across temporal dimensions. Subsequently, a DGNN was constructed to integrate heterogeneous features, where nodes represented modality-specific embeddings and edges denoted inter-modal information flow. Finally, model optimization was performed using a joint loss function combining cross-entropy and cosine similarity loss, facilitating robust classification of nodule progression status. ResultsThe proposed CGN model demonstrated superior predictive performance on the held-out test set, achieving an area under the receiver operating characteristic curve(AUC) of 0.830, accuracy of 0.843, sensitivity of 0.657, specificity of 0.712, Cohen's Kappa of 0.417, and F1 score of 0.544. Compared with unimodal baselines, the CGN model yielded a 36%-48% relative improvement in AUC. Ablation studies revealed a 2%-22% increase in AUC when compared to simplified architectures lacking key components, substantiating the efficacy of the proposed multimodal fusion strategy and modular design. Incorporation of traditional Chinese medicine (TCM)-specific symptomatology led to an additional 5% improvement in AUC, underscoring the complementary value of integrating TCM and western clinical data. Through gradient-weighted activation mapping visualization analysis, it was found that the model's attention predominantly focused on nodule regions and effectively captured dynamic associations between clinical data and imaging-derived features. ConclusionThe CGN model, by synergistically combining cross-attention encoding with directed graph-based feature integration, enables effective alignment and fusion of heterogeneous multimodal data. The incorporation of both TCM and western clinical information facilitates complementary feature enrichment, thereby enhancing predictive accuracy for pulmonary nodule progression. This approach holds significant potential for supporting intelligent risk stratification and personalized surveillance strategies in lung cancer prevention.
4.Advances in nanocarrier-mediated cancer therapy: Progress in immunotherapy, chemotherapy, and radiotherapy.
Yue PENG ; Min YU ; Bozhao LI ; Siyu ZHANG ; Jin CHENG ; Feifan WU ; Shuailun DU ; Jinbai MIAO ; Bin HU ; Igor A OLKHOVSKY ; Suping LI
Chinese Medical Journal 2025;138(16):1927-1944
Cancer represents a major worldwide disease burden marked by escalating incidence and mortality. While therapeutic advances persist, developing safer and precisely targeted modalities remains imperative. Nanomedicines emerges as a transformative paradigm leveraging distinctive physicochemical properties to achieve tumor-specific drug delivery, controlled release, and tumor microenvironment modulation. By synergizing passive enhanced permeation and retention effect-driven accumulation and active ligand-mediated targeting, nanoplatforms enhance pharmacokinetics, promote tumor microenvironment enrichment, and improve cellular internalization while mitigating systemic toxicity. Despite revolutionizing cancer therapy through enhanced treatment efficacy and reduced adverse effects, translational challenges persist in manufacturing scalability, longterm biosafety, and cost-efficiency. This review systematically analyzes cutting-edge nanoplatforms, including polymeric, lipidic, biomimetic, albumin-based, peptide engineered, DNA origami, and inorganic nanocarriers, while evaluating their strategic advantages and technical limitations across three therapeutic domains: immunotherapy, chemotherapy, and radiotherapy. By assessing structure-function correlations and clinical translation barriers, this work establishes mechanistic and translational references to advance oncological nanomedicine development.
Humans
;
Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Nanoparticles/chemistry*
;
Animals
;
Nanomedicine/methods*
;
Drug Delivery Systems/methods*
;
Drug Carriers/chemistry*
;
Radiotherapy/methods*
5.Prediction of quality markers for cough-relieving and phlegm-expelling effects of Kening Granules based on plasma pharmacology combined with network pharmacology and pharmacokinetics.
Qing-Qing CHEN ; Yuan-Xian ZHANG ; Qian WANG ; Jin-Ling ZHANG ; Lin ZHENG ; Yong HUANG ; Yang JIN ; Zi-Peng GONG ; Yue-Ting LI
China Journal of Chinese Materia Medica 2025;50(4):959-973
This study predicts the quality markers(Q-markers) for the cough-relieving and phlegm-expelling effects of Kening Granules based on pharmacodynamics, plasma drug chemistry, network pharmacology, and pharmacokinetics. Strong ammonia solution spray and phenol red secretion assays were employed to evaluate the cough-relieving and phlegm-expelling effects of Kening Granules. Twentysix absorbed prototype components of Kening Granules were identified by ultra high performance liquid chromatography coupled with QExactive Plus quadrupole/Orbitrap high resolution mass spectrometry(UHPLC-Q-Exactive Plus Orbitrap HRMS). Through network pharmacology, 11 potential active components were screened out for the cough-relieving and phlegm-expelling effects of Kening Granules. The 11 components acted on 40 common targets such as IL6, TLR4, and STAT3, which mainly participated in PI3K/Akt, HIF-1, and EGFR signaling pathways. Pharmacokinetic quantitative analysis was performed for 7 prototype components. Three compounds including azelaic acid, caffeic acid, and vanillin were identified as Q-markers for the cough-relieving and phlegm-expelling effects of Kening Granules based on their effectiveness, transmissibility, and measurability. The results of this study are of great significance for clarifying the pharmacological substance basis, optimizing the quality standards, and promoting the clinical application of Kening Granules.
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Cough/blood*
;
Male
;
Humans
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Biomarkers/blood*
;
Quality Control
;
Chromatography, High Pressure Liquid
;
Antitussive Agents/chemistry*
6.NO-releasing double-crosslinked responsive hydrogels accelerate the treatment and repair of ischemic stroke.
Wen GUO ; Cheng HU ; Yue WANG ; Wen ZHANG ; Shaomin ZHANG ; Jin PENG ; Yunbing WANG ; Jinhui WU
Acta Pharmaceutica Sinica B 2025;15(2):1112-1125
Stroke is a global disease that seriously threatens human life. The pathological mechanisms of ischemic stroke include neuroinflammation, oxidative stress, and the destruction of blood vessels at the lesion site. Here, a biocompatible in situ hydrogel platform was designed to target multiple pathogenic mechanisms post-stroke, including anti-inflammation, anti-oxidant, and promotion of angiogenesis. Double-crosslinked responsive multifunctional hydrogels could quickly respond to the pathological microenvironment of the ischemic damage site and mediate the delivery of nitric oxide (NO) and ISO-1 (inhibitor of macrophage migration inhibitory factor, MIF). The hydrogel demonstrated good biocompatibility and could scavenge reactive oxygen species (ROS) and inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-10 (IL-10), and MIF. In a mouse stroke model, hydrogels, when situated within the microenvironment of cerebral infarction characterized by weak acidity and elevated ROS release, would release anti-inflammatory nanoparticles rapidly that exert an anti-inflammatory effect. Concurrently, NO was sustained release to facilitate angiogenesis and provide neuroprotective effects. Neurological function was significantly improved in treated mice as assessed by the modified neurological severity score, rotarod test, and open field test. These findings indicate that the designed hydrogel held promise for sustained delivery of NO and ISO-1 to alleviate cerebral ischemic injury by responding to the brain's pathological microenvironment.
7.Expert consensus on the prevention and treatment of enamel demineralization in orthodontic treatment.
Lunguo XIA ; Chenchen ZHOU ; Peng MEI ; Zuolin JIN ; Hong HE ; Lin WANG ; Yuxing BAI ; Lili CHEN ; Weiran LI ; Jun WANG ; Min HU ; Jinlin SONG ; Yang CAO ; Yuehua LIU ; Benxiang HOU ; Xi WEI ; Lina NIU ; Haixia LU ; Wensheng MA ; Peijun WANG ; Guirong ZHANG ; Jie GUO ; Zhihua LI ; Haiyan LU ; Liling REN ; Linyu XU ; Xiuping WU ; Yanqin LU ; Jiangtian HU ; Lin YUE ; Xu ZHANG ; Bing FANG
International Journal of Oral Science 2025;17(1):13-13
Enamel demineralization, the formation of white spot lesions, is a common issue in clinical orthodontic treatment. The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment. The prevention, diagnosis, and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties. This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment, advocating for proactive prevention, early detection, timely treatment, scientific follow-up, and multidisciplinary management of white spot lesions throughout the orthodontic process, thereby maintaining the dental health of patients during orthodontic treatment.
Humans
;
Consensus
;
Dental Caries/etiology*
;
Dental Enamel/pathology*
;
Tooth Demineralization/etiology*
;
Tooth Remineralization
8.NSUN2 promotes proliferation, migration, and invasion of gastric cancer cells by mediating m5C modification of ARMC9
Yue LI ; Dong CHEN ; Jin WANG ; Yi PENG ; Yuanqi ZHANG ; Fen YANG ; Xuejun WANG
Journal of China Pharmaceutical University 2025;56(5):583-591
To investigate the impact and underlying mechanism of NOP2/Sun RNA methyltransferase 2 (NSUN2) on gastric cancer progression, TCGA database was used and revealed a significant upregulation of NSUN2 expression in gastric cancer tissues. Western blot analysis revealed that NSUN2 was upregulated in gastric cancer cells compared with gastric mucosal epithelial cells. Colony formation assays demonstrated an enhanced colony-forming capacity in NSUN2-overexpressing cells. Furthermore, Transwell assays showed a marked increase in cell migration and invasion upon high NSUN2 expression. Moreover, TCGA database analysis suggested ARMC9 as a potential downstream target of NSUN2. Subsequently, MeRIP-qPCR analysis revealed that NSUN2 overexpression could increase m5C modification of ARMC9 mRNA, and reduce its degradation rate, thus enhancing protein expression. Additionally, ARMC9 overexpression augmented cellular colony formation and migratory and invasive capabilities. These findings indicate that NSUN2 promotes gastric cancer progression by elevating m5C modification of ARMC9 mRNA, increasing its stability and enhancing its expression, therefore, NSUN2 and ARMC9 may serve as potential therapeutic targets for gastric cancer.
9.Gemcitabine long-term maintenance chemotherapy benefits patients with survival: a multicenter, real-world study of advanced breast cancer treatment in China
Jian YUE ; Guohong SONG ; Huiping LI ; Tao SUN ; Lihua SONG ; Zhongsheng TONG ; Lili ZHANG ; Zhenchuan SONG ; Quchang OUYANG ; Jin YANG ; Yueyin PAN ; Peng YUAN
Chinese Journal of Oncology 2024;46(3):249-255
Objective:This study collected a real-world data on survival and efficacy of gemcitabine-containing therapy in advanced breast cancer. Aimed to find the main reasons of affecting the duration of gemcitabine-base therapy in advanced breast cancer patients.Methods:Advanced breast cancer patients who received gemcitabine-base therapy from January 2017 to January 2019 were enrolled(10 hospitals). The clinicopathological data, the number of chemotherapy cycles and the reasons for treatment termination were collected and analyzed. To identify the reasons related with continuous treatment for advanced breast cancer and the factors which affect the survival and efficacy.Results:A total of 224 patients with advanced breast cancer were enrolled in this study, with a median age of 52 years (26-77 years), 55.4%(124/224) was postmenopausal. Luminal type were 83 cases, TNBC were 97 cases, and human epidermal growth factor receptor 2 (HER's-2) overexpression were 44. At the analysis, 224 patients who received the gemcitabine-based regimens were evaluated, included 5 complete reponse (CR), 77 partial response (PR), 112 stable disease (SD) and 27 progressive disease (PD). The objective response rate (ORR) was 36.6%(82/224). Seventy patients had serious adverse diseases, including leukopenia (9), neutrophilia (49), thrombocytopenia (15), and elevated transaminase (2). The median follow-up time was 41 months (26~61 months), and the median PFS was 5.6 months. The reasons of termination treatment were listed: disease progression were 90 patients; personal reasons were 51 patients; adverse drug reactions were 18 patients; completed treatment were 65 patients. It was found that progression-free survival (PFS) was significantly longer in patients receiving >6 cycles than that in patients with ≤6 cycles (8.2 months vs 5.4 months, HR=2.474, 95% CI: 1.730-3.538, P<0.001). Conclusions:Gemcitabine-based regimen is generally well tolerated in the Chinese population and has relatively ideal clinical efficacy in the real world. The median PFS is significantly prolonged when the number of treatment cycles are appropriately increased.
10.Single-cell RNA sequencing reveals the process of CA19-9 production and dynamics of the immune microenvironment between CA19-9 (+) and CA19-9 (-) PDAC
Deyu ZHANG ; Fang CUI ; Kailian ZHENG ; Wanshun LI ; Yue LIU ; Chang WU ; Lisi PENG ; Zhenghui YANG ; Qianqian CHEN ; Chuanchao XIA ; Shiyu LI ; Zhendong JIN ; Xiaojiang XU ; Gang JIN ; Zhaoshen LI ; Haojie HUANG
Chinese Medical Journal 2024;137(20):2415-2428
Background::Pancreatic ductal adenocarcinoma (PDAC) is one of the main types of malignant tumor of the digestive system, and patient prognosis is affected by difficulties in early diagnosis, poor treatment response, and a high postoperative recurrence rate. Carbohydrate antigen 19-9 (CA19-9) has been widely used as a biomarker for the diagnosis and postoperative follow-up of PDAC patients. Nevertheless, the production mechanism and potential role of CA19-9 in PDAC progression have not yet been elucidated.Methods::We performed single-cell RNA sequencing on six samples pathologically diagnosed as PDAC (three CA19-9-positive and three CA19-9-negative PDAC samples) and two paracarcinoma samples. We also downloaded and integrated PDAC samples (each from three CA19-9-positive and CA19-9-negative patients) from an online database. The dynamics of the proportion and potential function of each cell type were verified through immunofluorescence. Moreover, we built an in vitro coculture cellular model to confirm the potential function of CA19-9. Results::Three subtypes of cancer cells with a high ability to produce CA19-9 were identified by the markers TOP2A, AQP5, and MUC5AC. CA19-9 production bypass was discovered on antigen-presenting cancer-associated fibroblasts (apCAFs). Importantly, the proportion of immature ficolin-1 positive (FCN1+) macrophages was high in the CA19-9-negative group, and the proportion of mature M2-like macrophages was high in the CA19-9-positive group. High proportions of these two macrophage subtypes were associated with an unfavourable clinical prognosis. Further experiments indicated that CA19-9 could facilitate the transformation of M0 macrophages into M2 macrophages in the tumor microenvironment. Conclusions::Our study described CA19-9 production at single-cell resolution and the dynamics of the immune atlas in CA19-9-positive and CA19-9-negative PDAC. CA19-9 could promote M2 polarization of macrophage in the pancreatic tumor microenvironment.

Result Analysis
Print
Save
E-mail