1.Mechanism of Xiangsha Liujunzi Decoction in improving autophagy in interstitial cells of Cajal of rats with functional dyspepsia by regulation of IRE1/ASK1/JNK pathway.
Ming-Kai LYU ; Yong-Qiang DUAN ; Jin JIN ; Wen-Chao SHAO ; Qi WU ; Yong TIAN ; Min BAI ; Ying-Xia CHENG
China Journal of Chinese Materia Medica 2025;50(8):2237-2244
This study explored the mechanism of Xiangsha Liujunzi Decoction(XSLJZD) in the treatment of functional dyspepsia(FD) based on inositol-requiring enzyme 1(IRE1)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway-mediated autophagy in interstitial cells of Cajal(ICC). Forty-eight SPF-grade male SD suckling rats were randomly divided into a blank group and a modeling group, and the integrated modeling method(iodoacetamide gavage + disturbance of hunger and satiety + swimming exhaustion) was used to replicate the FD rat model. After the model replications were successfully completed, the rats were divided into a model group, high-dose, medium-dose, and low-dose groups of XSLJZD(12, 6, and 3 g·kg~(-1)·d~(-1)), and a positive drug group(mosapride of 1.35 mg·kg~(-1)·d~(-1)), and the intervention lasted for 14 days. The gastric emptying rate and intestinal propulsion rate of rats in each group were measured. The histopathological changes in the gastric sinus tissue of rats in each group were observed by hematoxylin-eosin(HE) staining. The ultrastructure of ICC was observed by transmission electron microscopy. The immunofluorescence double staining technique was used to detect the protein expression of phospho-IRE1(p-IRE1), TNF receptor associated factors 2(TRAF2), phospho-ASK1(p-ASK1), phospho-JNK(p-JNK), p62, and Beclin1 in ICC of gastric sinus tissue of rats in each group. Western blot was used to detect the related protein expression of gastric sinus tissue of rats in each group. Compared with those in the blank group, the rats in the model group showed decreased body weight, gastric emptying rate, and intestinal propulsion rate, and transmission electron microscopy revealed damage to the endoplasmic reticulum structure and increased autophagosomes in ICC. Immunofluorescence staining revealed that the ICC of gastric sinus tissue showed a significant elevation of p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins and a significant reduction of p62 protein. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. Compared with the model group, the body weight of rats in the high-dose and medium-dose groups of XSLJZD was increased, and the gastric emptying rate and intestinal propulsion rate were increased. Transmission electron microscopy observed amelioration of structural damage to the endoplasmic reticulum of ICC and reduction of autophagosomes, and the p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins in the ICC of gastric sinus tissue were significantly decreased. The p62 protein was significantly increased. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. XSLJZD can effectively treat FD, and its specific mechanism may be related to the inhibition of the expression of molecules related to the endoplasmic reticulum stress IRE1/ASK1/JNK pathway in ICC and the improvement of autophagy to promote gastric motility in ICC.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Autophagy/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Interstitial Cells of Cajal/metabolism*
;
Dyspepsia/physiopathology*
;
Protein Serine-Threonine Kinases/genetics*
;
MAP Kinase Kinase Kinase 5/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Endoribonucleases/genetics*
;
Multienzyme Complexes
2.Efficacy and Safety of Yangxue Qingnao Pills Combined with Amlodipine in Treatment of Hypertensive Patients with Blood Deficiency and Gan-Yang Hyperactivity: A Multicenter, Randomized Controlled Trial.
Fan WANG ; Hai-Qing GAO ; Zhe LYU ; Xiao-Ming WANG ; Hui HAN ; Yong-Xia WANG ; Feng LU ; Bo DONG ; Jun PU ; Feng LIU ; Xiu-Guang ZU ; Hong-Bin LIU ; Li YANG ; Shao-Ying ZHANG ; Yong-Mei YAN ; Xiao-Li WANG ; Jin-Han CHEN ; Min LIU ; Yun-Mei YANG ; Xiao-Ying LI
Chinese journal of integrative medicine 2025;31(3):195-205
OBJECTIVE:
To evaluate the clinical efficacy and safety of Yangxue Qingnao Pills (YXQNP) combined with amlodipine in treating patients with grade 1 hypertension.
METHODS:
This is a multicenter, randomized, double-blind, and placebo-controlled study. Adult patients with grade 1 hypertension of blood deficiency and Gan (Liver)-yang hyperactivity syndrome were randomly divided into the treatment or the control groups at a 1:1 ratio. The treatment group received YXQNP and amlodipine besylate, while the control group received YXQNP's placebo and amlodipine besylate. The treatment duration lasted for 180 days. Outcomes assessed included changes in blood pressure, Chinese medicine (CM) syndrome scores, symptoms and target organ functions before and after treatment in both groups. Additionally, adverse events, such as nausea, vomiting, rash, itching, and diarrhea, were recorded in both groups.
RESULTS:
A total of 662 subjects were enrolled, of whom 608 (91.8%) completed the trial (306 in the treatment and 302 in the control groups). After 180 days of treatment, the standard deviations and coefficients of variation of systolic and diastolic blood pressure levels were lower in the treatment group compared with the control group. The improvement rates of dizziness, headache, insomnia, and waist soreness were significantly higher in the treatment group compared with the control group (P<0.05). After 30 days of treatment, the overall therapeutic effects on CM clinical syndromes were significantly increased in the treatment group as compared with the control group (P<0.05). After 180 days of treatment, brachial-ankle pulse wave velocity, ankle brachial index and albumin-to-creatinine ratio were improved in both groups, with no statistically significant differences (P>0.05). No serious treatment-related adverse events occurred during the study period.
CONCLUSIONS
Combination therapy of YXQNP with amlodipine significantly improved symptoms such as dizziness and headache, reduced blood pressure variability, and showed a trend toward lowering urinary microalbumin in hypertensive patients. These findings suggest that this regimen has good clinical efficacy and safety. (Registration No. ChiCTR1900022470).
Humans
;
Amlodipine/adverse effects*
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Hypertension/complications*
;
Middle Aged
;
Treatment Outcome
;
Drug Therapy, Combination
;
Adult
;
Blood Pressure/drug effects*
;
Double-Blind Method
;
Aged
;
Antihypertensive Agents/adverse effects*
3.Development and Analysis of Standards for Drugs Under Special Management
Kuikui GENG ; Ling JIANG ; Jiancun ZHEN ; Tianlu SHI ; Wei ZHANG ; Jin LU ; Jianqing WANG ; Xiaoyang LU ; Qianzhou LYU ; Zhiqing ZHANG ; Ying CHEN ; Hong XIA ; Qin GUANG ; Hongpeng BI
Herald of Medicine 2024;43(8):1217-1221
Drugs under special management include narcotic drugs,psychotropic drugs,toxic drugs for medical use,radiopharmaceuticals,and pharmaceutical precursor chemicals.Supervising and guiding the clinical use of drugs under special management is one of the important responsibilities of the Pharmaceutical Management and Drug Therapy Committee(Group)of medical institutions.The standard for drugs under special management is led by the Pharmaceutical Professional Committee of the China Hospital Association,which standardizes 16 key elements of organizational management,process management,and quality control management drugs under special management in medical institutions.It can guide the standardized implementation of Pharmaceuticals under special control work in various levels and types of medical institutions.This article elaborates on the methods and contents of formulating standards for Pharmaceuticals under special management,to provide reference and inspiration for medical institutions to carry out special drug drug management and daily related work.
4.Efficacy and safety of switching to flumatinib in patients with chronic myeloid leukemia who have not achieved optimal response or are intolerant to TKI treatment
Songfan YANG ; Qin WEN ; Ying ZHANG ; Jinglong LYU ; Hua'e SHU ; Hongju YAN ; Cheng ZHANG ; Jin WEI ; Xi ZHANG
Journal of Army Medical University 2024;46(4):340-346
Objective To observe the efficacy and safety of flumatinib conversion in chronic myelogenous leukemia-chronicphase(CML-CP)patients with suboptimal TKI response or intolerance.Methods Patients who did not have the best response or intolerance to first-line imatinib,dasatinib,and nilotinib and switched to flumatinib(600 mg/d)from February 2020 to August 2022 were collected from 5 hospitals from Chongqing and affiliated hospitals of North Sichuan Medical College.The efficacy and safety of flumatinib were observed.The optimal response rate,major molecular response(MMR),cumulative complete cytogenetic response(CCyR)rate,cumulative MMR rate,cumulative deep molecular response(DMR),progression-free survival(PFS),event-free survival(EFS)and adverse reactions in 3,6 and 12 months after treatment were observed and analyzed.Results A total of 100 patients with CML-CP were enrolled,with a median follow-up of 18(3~36)months.The optimal response rate was 92.6%(88/95),94.4%(85/90)and 92.9%(79/85)respectively,at 3,6 and 12 months after treatment.Till August 20,2023,the cumulative CCyR and MMR rate was 98.0%(98/100)and 81.9%(77/94),respectively,the median time to reach CCyR and MMR was 3 months,and cumulative DMR rate was 51.0%(51/100).PFS rate was 100.0%(100/100)and 1-year EFS rate was 85.6%(75/90).The most common non-hematologic adverse reactions of flumatinib were diarrhea and abdominal pain(7.0%),followed by renal dysfunction(6.0%)and musculoskeletal pain(2.0%).The main hematologic adverse reactions were thrombocytopenia(12.0%),anemia(6.0%)and leukopenia(2.0%).Conclusion Flumatinib has better MMR and DMR and is well tolerated in CML-CP patients with TKI resistance or intolerance.
5.The Uptake and Distribution Evidence of Nano-and Microplastics in vivo after a Single High Dose of Oral Exposure
Tao HONG ; Wei SUN ; Yuan DENG ; Da Jian LYU ; Hong Cui JIN ; Long Ying BAI ; Jun NA ; Rui ZHANG ; Yuan GAO ; Wei Guo PAN ; Sen Zuo YANG ; Jun Ling YAN
Biomedical and Environmental Sciences 2024;37(1):31-41
Objective Tissue uptake and distribution of nano-/microplastics was studied at a single high dose by gavage in vivo.Methods Fluorescent microspheres (100 nm, 3 μm, and 10 μm) were given once at a dose of 200 mg/(kg·body weight). The fluorescence intensity (FI) in observed organs was measured using the IVIS Spectrum at 0.5, 1, 2, and 4 h after administration. Histopathology was performed to corroborate these findings.Results In the 100 nm group, the FI of the stomach and small intestine were highest at 0.5 h, and the FI of the large intestine, excrement, lung, kidney, liver, and skeletal muscles were highest at 4 h compared with the control group (P < 0.05). In the 3 μm group, the FI only increased in the lung at 2 h (P < 0.05). In the 10 μm group, the FI increased in the large intestine and excrement at 2 h, and in the kidney at 4 h (P < 0.05). The presence of nano-/microplastics in tissues was further verified by histopathology. The peak time of nanoplastic absorption in blood was confirmed.Conclusion Nanoplastics translocated rapidly to observed organs/tissues through blood circulation;however, only small amounts of MPs could penetrate the organs.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Effects of continuous blood purification on mitochondrial function of mononuclear cells and prognosis of patients with traumatic sepsis
Zhixin LI ; Tie LYU ; Liezhou JIN ; Lyujian CHEN ; Xiaolong XI ; Lijun YING
Chinese Journal of Trauma 2024;40(11):1008-1015
Objective:To investigate the effects of continuous blood purification (CBP) on mitochondrial function of peripheral blood mononuclear cells and clinical prognosis of patients with traumatic sepsis.Methods:A prospective cohort study was used to analyze the clinical data of 90 patients with traumatic sepsis admitted to the Intensive Care Unit of Shaoxing People′s Hospital from January 2023 to June 2024. Based on standard operating procedures (SOP), patients were divided into CBP group and non-CBP group according to whether they received CBP treatment. The mitochondrial DNA (mtDNA) copy number, activity of mitochondrial respiratory chain complex V, levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-10 in the mononuclear cells on ICU admission and at 12, 24 and 48 hours after treatment were compared between the two groups. Acute physiology and chronic health evaluation II (APACHE II) score and sequential organ failure assessment (SOFA) score on ICU admission and at 48 hours after treatment were detected in the two groups. The length of ICU stay, total length of hospital stay and 28-day mortality after ICU admission were compared between the two groups.Results:A total of 90 patients with traumatic sepsis were included, comprising 56 males and 34 females, aged 18-82 years [51.3(38.7, 70.6)years], with injury severity score (ISS) of 16-54 points [36.2(17.0, 53.6)points]. There were 52 patients in the CBP group and 38 in the non-CBP group. All the patients were followed up for 7-14 days [10.0(8.0, 12.0)days]. On ICU admission, the mtDNA copy number was 638.5±124.0 in the CBP group and 634.7±122.1 in the non-CBP group ( P>0.05). At 12, 24 and 48 hours after treatment, the mtDNA copy number in the CBP group was 564.2±105.6, 415.7±83.5 and 303.7±77.0 respectively, significantly lower than 622.9±120.2, 581.5±113.6, 530.7±97.8 in the non-CBP group ( P<0.05 or 0.01). At 12, 24 and 48 hours after treatment, the mtDNA copy number in both groups continued to decrease compared with that on ICU admission ( P<0.05). On ICU admission, the activity of mitochondrial respiratory chain complex Ⅴ was (74.0±26.0)pg/ml in the CBP group and (72.8±25.3)pg/ml in the non-CBP group ( P>0.05); at 12, 24 and 48 hours after treatment, it was (69.4±24.2)pg/ml, (78.3±26.8)pg/ml and (91.5±33.5)pg/ml respectively in the CBP group, significantly higher than (65.3±23.6)pg/ml, (60.7±19.4)pg/ml and (53.8±16.9)pg/ml in the non-CBP group ( P<0.05 or 0.01); at 12 hours after treatment, it was decreased in both groups compared with that on ICU admission ( P<0.05); at 24 and 48 hours after treatment, it was gradually increased in the CBP group compared with those on ICU admission and at 12 hours after treatment ( P<0.05), while in the non-CBP group, it continued to decrease ( P<0.05). The levels of TNF-α, IL-6 and IL-10 on ICU admission were (51.6±17.1)pg/ml, (174.1±57.3)pg/ml and (67.6±16.2)pg/ml respectively in the CBP group and (49.5±16.7)pg/ml, (177.8±58.7)pg/ml and (65.7±16.6)pg/ml respectively in the non-CBP group ( P>0.05). At 12, 24 and 48 hours after treatment, the levels of TNF-α in the CBP group were (43.6±15.6)pg/ml, (29.4±12.5)pg/ml and (26.2±10.6)pg/ml respectively, the IL-6 levels were (122.4±41.7)pg/ml, (90.6±33.1)pg/ml, (75.6±24.7)pg/ml respectively and the IL-10 levels were (72.6±18.1)pg/ml, (80.7±20.6)pg/ml, (86.2±22.9)pg/ml respectively, which were significantly lower than (48.8±16.2)pg/ml, (46.5±15.5)pg/ml, (40.0±14.2)pg/ml at 12 hours after treatment, (168.4±51.6)pg/ml, (131.5±42.7)pg/ml, (112.7±35.8)pg/ml at 24 hours after treatment, and (78.6±19.3)pg/ml, (91.1±23.8)pg/ml, (99.4±26.6)pg/ml at 48 hours after treatment in the non-CBP group ( P<0.05 or 0.01). At 12, 24 and 48 hours after treatment, the levels of TNF-α and IL-6 in both groups continued to decrease, while the levels of IL-10 continued to increase compared with those on ICU admission ( P<0.05). On ICU admission, the APACHE Ⅱ and SOFA scores were (20.6±10.5)points and (6.2±1.9)points in the CBP group and (21.2±11.2)points and (6.7±2.1)points in the non-CBP group ( P>0.05). At 48 hours after treatment, the APACHE Ⅱ and SOFA scores were (13.5±6.6)points and (2.7±0.6)points in the CBP group, which were significantly lower than (18.3±9.3)points and (5.3±1.5)points in the non-CBP group ( P<0.01). At 48 hours after treatment, the APACHE II and SOFA scores in both groups were significantly decreased compared with those on ICU admission ( P<0.05 or 0.01). The length of ICU stay, total length of hospital stay and 28-day mortality after ICU admission were (13.0±5.7)days, (20.4±8.6)days and 19.2% (10/52) respectively, which were significantly shorter and smaller than (17.6±6.6)days, (26.5±9.4)days and 31.6% (12/38) in the non-CBP group ( P<0.05 or 0.01). Conclusions:CBP treatment may reduce the release of mtDNA by alleviating the mitochondrial damage of the mononuclear cells in patients with traumatic sepsis so that the release of inflammatory factors and cellular apoptosis is reduced, and improve the state of cell energy metabolism and cellular immune function by increasing the activity of mitochondrial respiratory chain complex V in the mononuclear cells, and participate in the reconstruction of immune homeostasis of the body so the inflammatory state and clinical prognosis of the patients are improved.
8.Expert consensus on ethical requirements for artificial intelligence (AI) processing medical data.
Cong LI ; Xiao-Yan ZHANG ; Yun-Hong WU ; Xiao-Lei YANG ; Hua-Rong YU ; Hong-Bo JIN ; Ying-Bo LI ; Zhao-Hui ZHU ; Rui LIU ; Na LIU ; Yi XIE ; Lin-Li LYU ; Xin-Hong ZHU ; Hong TANG ; Hong-Fang LI ; Hong-Li LI ; Xiang-Jun ZENG ; Zai-Xing CHEN ; Xiao-Fang FAN ; Yan WANG ; Zhi-Juan WU ; Zun-Qiu WU ; Ya-Qun GUAN ; Ming-Ming XUE ; Bin LUO ; Ai-Mei WANG ; Xin-Wang YANG ; Ying YING ; Xiu-Hong YANG ; Xin-Zhong HUANG ; Ming-Fei LANG ; Shi-Min CHEN ; Huan-Huan ZHANG ; Zhong ZHANG ; Wu HUANG ; Guo-Biao XU ; Jia-Qi LIU ; Tao SONG ; Jing XIAO ; Yun-Long XIA ; You-Fei GUAN ; Liang ZHU
Acta Physiologica Sinica 2024;76(6):937-942
As artificial intelligence technology rapidly advances, its deployment within the medical sector presents substantial ethical challenges. Consequently, it becomes crucial to create a standardized, transparent, and secure framework for processing medical data. This includes setting the ethical boundaries for medical artificial intelligence and safeguarding both patient rights and data integrity. This consensus governs every facet of medical data handling through artificial intelligence, encompassing data gathering, processing, storage, transmission, utilization, and sharing. Its purpose is to ensure the management of medical data adheres to ethical standards and legal requirements, while safeguarding patient privacy and data security. Concurrently, the principles of compliance with the law, patient privacy respect, patient interest protection, and safety and reliability are underscored. Key issues such as informed consent, data usage, intellectual property protection, conflict of interest, and benefit sharing are examined in depth. The enactment of this expert consensus is intended to foster the profound integration and sustainable advancement of artificial intelligence within the medical domain, while simultaneously ensuring that artificial intelligence adheres strictly to the relevant ethical norms and legal frameworks during the processing of medical data.
Artificial Intelligence/legislation & jurisprudence*
;
Humans
;
Consensus
;
Computer Security/standards*
;
Confidentiality/ethics*
;
Informed Consent/ethics*
9.Research progresses of Qa-1 restricted CD8+ regulatory T cells in the pathogenesis of infectious diseases.
Xiaoyue XU ; Manling XUE ; Jiajia ZUO ; Kang TANG ; Yusi ZHANG ; Chunmei ZHANG ; Ran ZHUANG ; Yun ZHANG ; Boquan JIN ; Yuhong LYU ; Ying MA
Chinese Journal of Cellular and Molecular Immunology 2024;40(11):1018-1023
The Qa-1 in mice is homologous to human leukocyte antigen E(HLA-E), and both of them belong to the non-classical major histocompatibility complex I b(MHC-I b) molecules. Qa-1 is capable of presenting self or exogenous antigen peptides to interact with two distinct receptors, namely T cell receptor (TCR) and natural killer cell group 2 member A (or C) (NKG2A/C), thus playing an important role in immune response and regulation. Qa-1-restricted regulatory CD8+ T cell (CD8+ Treg) is one of the most studied CD8+ Treg subgroups, which can maintain immune homeostasis and autoimmune tolerance by exerting immunosuppressive effects. Consequently, Qa-1-restricted CD8+Treg cells are closely associated with the occurrence and development of various clinical diseases, such as tumors, infections, autoimmune diseases, and transplant rejections. This paper provides a comprehensive review of the phenotypic characteristics, functional effects, regulatory mechanisms of Qa-1-restricted CD8+ Treg cells, as well as the latest research progresses of Qa-1-restricted CD8+ Treg cells involved in the pathogenesis of infectious diseases.
Humans
;
Animals
;
T-Lymphocytes, Regulatory/immunology*
;
Histocompatibility Antigens Class I/immunology*
;
CD8-Positive T-Lymphocytes/immunology*
;
Communicable Diseases/immunology*
10.Epidemiological characteristics of a 2019-nCoV outbreak caused by Omicron variant BF.7 in Shenzhen.
Yan Peng CHENG ; Dong Feng KONG ; Jia ZHANG ; Zi Quan LYU ; Zhi Gao CHEN ; Hua Wei XIONG ; Yan LU ; Qing Shan LUO ; Qiu Ying LYU ; Jin ZHAO ; Ying WEN ; Jia WAN ; Fang Fang LU ; Jian Hua LU ; Xuan ZOU ; Zhen ZHANG
Chinese Journal of Epidemiology 2023;44(3):379-385
Objective: To explore the epidemiological characteristic of a COVID-19 outbreak caused by 2019-nCoV Omicron variant BF.7 and other provinces imported in Shenzhen and analyze transmission chains and characteristics. Methods: Field epidemiological survey was conducted to identify the transmission chain, analyze the generation relationship among the cases. The 2019-nCoV nucleic acid positive samples were used for gene sequencing. Results: From 8 to 23 October, 2022, a total of 196 cases of COVID-19 were reported in Shenzhen, all the cases had epidemiological links. In the cases, 100 were men and 96 were women, with a median of age, M (Q1, Q3) was 33(25, 46) years. The outbreak was caused by traverlers initial cases infected with 2019-nCoV who returned to Shenzhen after traveling outside of Guangdong Province.There were four transmission chains, including the transmission in place of residence and neighbourhood, affecting 8 persons, transmission in social activity in the evening on 7 October, affecting 65 persons, transmission in work place on 8 October, affecting 48 persons, and transmission in a building near the work place, affecting 74 persons. The median of the incubation period of the infection, M (Q1, Q3) was 1.44 (1.11, 2.17) days. The incubation period of indoor exposure less than that of the outdoor exposure, M (Q1, Q3) was 1.38 (1.06, 1.84) and 1.95 (1.22, 2.99) days, respcetively (Wald χ2=10.27, P=0.001). With the increase of case generation, the number and probability of gene mutation increased. In the same transmission chain, the proportion of having 1-3 mutation sites was high in the cases in the first generation. Conclusions: The transmission chains were clear in this epidemic. The incubation period of Omicron variant BF.7 infection was shorter, the transmission speed was faster, and the gene mutation rate was higher. It is necessary to conduct prompt response and strict disease control when epidemic occurs.
Male
;
Humans
;
Female
;
SARS-CoV-2
;
COVID-19/epidemiology*
;
Disease Outbreaks
;
Epidemics
;
China/epidemiology*

Result Analysis
Print
Save
E-mail