1.Gene frequencies and polymorphism of the MNS blood group system in the Han population of voluntary blood donors in Suzhou
Zihao XU ; Xiaoyan FU ; Zhen LIU ; Jia JIANG ; Yiming JIN
Chinese Journal of Blood Transfusion 2025;38(3):397-401
[Objective] To investigate the antigen and gene frequency distribution of the MNS blood group system in the Han population of voluntary blood donors in Suzhou, and to explore the polymorphism of rare MNS blood group genes, in order to improve the construction of the local rare blood group database. [Methods] A total of 8 034 whole blood samples were randomly collected from Han blood donors at our station from October 2023 to June 2024. The MNS blood group phenotypes were identified using serological methods. Gene frequencies were analyzed and compared with those of ethnic populations in other regions. Rare MNS phenotype samples were subjected to gene sequencing. [Results] The distribution of MNS blood group system phenotypes within the population was as follows: the MM, NN, and MN phenotypes accounted for 23.00%, 27.12%, and 49.88% respectively; the SS, ss, and Ss phenotypes accounted for 0.30%, 90.99%, and 8.70% respectively. The gene frequencies of M, N, S, and s were 0.4794, 0.5206, 0.0465, and 0.9534 respectively. Chi-squared tests confirmed adherence to Hardy-Weinberg equilibrium with P-values of 0.997 and 0.349, showing statistical significance compared to some other regional ethnic populations (P<0.05). Additionally, one rare serological phenotype, S-s-, with a frequency of 0.01%, was identified. [Conclusion] The MNS blood group system in the Han population of voluntary blood donors in Suzhou exhibits polymorphism and regional distribution characteristics. Gene frequencies differ from those observed in other regions of China. It is essential to enhance the establishment of a rare blood type database in Suzhou to provide data support for precise clinical transfusion.
2.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.
3.Anti-COVID-19 mechanism of Anoectochilus roxburghii liquid based on network pharmacology and molecular docking
Jin ZHU ; Yan-bin WU ; De-fu HUANG ; Bing-ke BAI ; Xu-hui HE ; Dan JIA ; Cheng-jian ZHENG
Acta Pharmaceutica Sinica 2024;59(3):633-642
italic>Anoectochilus roxburghii liquid (spray, a hospital preparation of Wu Mengchao Hepatobiliary Hospital of Fujian Medical University) has shown a good clinical treatment effect during the COVID-19 pandemic, but its material basis and mechanism of action are still unclear. In this study, network pharmacology and molecular docking methods were used to predict the molecular mechanism of
4.Sagittal splitting osteotomy of the mandibular outer cortex and autologous bone grafting for the treatment of hemifacial microsomia
Lai GUI ; Feng NIU ; Bing YU ; Jianfeng LIU ; Ying CHEN ; Xi FU ; Shixing XU ; Jia QIAO ; Qi JIN ; Yu HE ; Xuebing LIANG ; Lei CUI ; Fuhuan CHEN ; Qi CHEN
Chinese Journal of Plastic Surgery 2024;40(3):249-257
Objective:To investigate a new method for the reconstruction of hemifacial microsomia by sagittal osteotomy of the affected mandibular outer cortex combined with bone graft of mandibular outer cortex from healthy side.Methods:From March 2006 to March 2023, the clinical data of patients with hemifacial microsomia admitted to the Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences were analyzed retrospectively. Preoperative diagnosis and surgical design were performed based on clinical manifestations and imaging findings. All cases were operated under general anesthesia. The affected mandibular outer cortex was previously split by an intraoral approach, and then the mandibular outer cortex of appropriate shape and size on the healthy side was harvested and grafted into the split bone space according to the preoperative design, following by internal rigid fixation. Complications, facial appearance improvement, and patient satisfaction were followed up. Photographs were taken preoperative, immediately postoperative and at the long-term(last) postoperative follow-up, and the severity of the deformity was analyzed. CT data from preoperative, immediate postoperative, and long-term follow-up visits were imported into Surgicase Proplan medical three-dimensional image workstation in Dicom format. The mandible was reconstructed using Segmentation, and the thickness of the mandible was measured during pre-operative, immediate post-operative and long-term follow-up visits. Anova with repeated measurement design was used to compare measurements and LSD test was used for multiple comparisons. The Kruskal-Wallis rank sum test were used to statistically analyze malformation severity. P< 0.05 is considered statistically significant. Results:A total of 39 patients were included in this study, including 13 females and 26 males, with an average age of (22.21±4.57) years (15-27 years). All patients were followed up for an average of (45.56±39.41) months (6-153 months) after surgery. The grafted mandibular outer cortex grows well with the adjacent bone tissue, and the mandibular angle and mandibular body are significantly wider. Of the 39 cases, 1 developed an infection 1 year after surgery, the titanium plate was exposed, and the patient healed after debridement and removal of the immobilizing splint. The facial appearance of the other patients improved significantly. Preoperative, immediate postoperative and long term follow up of mandibular thickness measurements were compared in pairs, and the differences were statistically significant (all P<0.05). The patient’s appearance satisfaction score: the preoperative score was [2.0(1.5, 2.0)] points, the immediate postoperative score was [4.0(4.0, 4.0)] points, the score of the last postoperative follow up was [4.0(4.0, 4.0)] points. There was statistical difference in satisfaction among the three groups ( P<0.01). The preoperative scores were compared with the scores of the immediate postoperative and the last postoperative follow-up respectively, and the differences were statistically significant( P<0.01). There was no statistical significance in satisfaction between the immediate postoperative score and the score of the last postoperative follow up ( P>0.05). Conclusion:The sagittal splitting osteotomy of the mandibular outer cortex is consistent with the features of mandibular anatomy, and provides a good condition for the grafting and healing of autogenous bone. Removing the outer cortex of the mandible on the healthy side not only increases the thickness of the affected side, but also decreases the width of the angle of the mandible on the healthy side, so as to effectively correct the asymmetric deformity of the mandible. The method is simple, with few complications and good results, and is one of the ideal treatments to correct hemofacial microsomia.
5.Sagittal splitting osteotomy of the mandibular outer cortex and autologous bone grafting for the treatment of hemifacial microsomia
Lai GUI ; Feng NIU ; Bing YU ; Jianfeng LIU ; Ying CHEN ; Xi FU ; Shixing XU ; Jia QIAO ; Qi JIN ; Yu HE ; Xuebing LIANG ; Lei CUI ; Fuhuan CHEN ; Qi CHEN
Chinese Journal of Plastic Surgery 2024;40(3):249-257
Objective:To investigate a new method for the reconstruction of hemifacial microsomia by sagittal osteotomy of the affected mandibular outer cortex combined with bone graft of mandibular outer cortex from healthy side.Methods:From March 2006 to March 2023, the clinical data of patients with hemifacial microsomia admitted to the Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences were analyzed retrospectively. Preoperative diagnosis and surgical design were performed based on clinical manifestations and imaging findings. All cases were operated under general anesthesia. The affected mandibular outer cortex was previously split by an intraoral approach, and then the mandibular outer cortex of appropriate shape and size on the healthy side was harvested and grafted into the split bone space according to the preoperative design, following by internal rigid fixation. Complications, facial appearance improvement, and patient satisfaction were followed up. Photographs were taken preoperative, immediately postoperative and at the long-term(last) postoperative follow-up, and the severity of the deformity was analyzed. CT data from preoperative, immediate postoperative, and long-term follow-up visits were imported into Surgicase Proplan medical three-dimensional image workstation in Dicom format. The mandible was reconstructed using Segmentation, and the thickness of the mandible was measured during pre-operative, immediate post-operative and long-term follow-up visits. Anova with repeated measurement design was used to compare measurements and LSD test was used for multiple comparisons. The Kruskal-Wallis rank sum test were used to statistically analyze malformation severity. P< 0.05 is considered statistically significant. Results:A total of 39 patients were included in this study, including 13 females and 26 males, with an average age of (22.21±4.57) years (15-27 years). All patients were followed up for an average of (45.56±39.41) months (6-153 months) after surgery. The grafted mandibular outer cortex grows well with the adjacent bone tissue, and the mandibular angle and mandibular body are significantly wider. Of the 39 cases, 1 developed an infection 1 year after surgery, the titanium plate was exposed, and the patient healed after debridement and removal of the immobilizing splint. The facial appearance of the other patients improved significantly. Preoperative, immediate postoperative and long term follow up of mandibular thickness measurements were compared in pairs, and the differences were statistically significant (all P<0.05). The patient’s appearance satisfaction score: the preoperative score was [2.0(1.5, 2.0)] points, the immediate postoperative score was [4.0(4.0, 4.0)] points, the score of the last postoperative follow up was [4.0(4.0, 4.0)] points. There was statistical difference in satisfaction among the three groups ( P<0.01). The preoperative scores were compared with the scores of the immediate postoperative and the last postoperative follow-up respectively, and the differences were statistically significant( P<0.01). There was no statistical significance in satisfaction between the immediate postoperative score and the score of the last postoperative follow up ( P>0.05). Conclusion:The sagittal splitting osteotomy of the mandibular outer cortex is consistent with the features of mandibular anatomy, and provides a good condition for the grafting and healing of autogenous bone. Removing the outer cortex of the mandible on the healthy side not only increases the thickness of the affected side, but also decreases the width of the angle of the mandible on the healthy side, so as to effectively correct the asymmetric deformity of the mandible. The method is simple, with few complications and good results, and is one of the ideal treatments to correct hemofacial microsomia.
6.YANG Zhi-Min's Experience in Differentiating and Treating Insomnia Based on the Generation,Dispersion,Divergence and Aggregation of Nutritive qi and Defensive qi
Xiao-Xuan ZHANG ; Jin-Xiu CHEN ; Shi-Ya HUANG ; Hua-Hua GUAN ; Bi-Yun XU ; Fu-Ping XU ; Jia-Min YUAN ; Zhi-Min YANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(8):2179-2183
Disharmony between nutritive qi(ying)and defensive qi(wei)is the core pathogenesis of insomnia.The normal function of ying-wei in the generation,dispersion,divergence and aggregation is the precondition for the realization of the coordination between ying and wei.The disordered function of ying-wei in the generation,dispersion,divergence and aggregation will cause the disharmony between ying and wei,and then the insomnia occurs.For the treatment of insomnia caused by the disordered function of ying-wei in the generation,Guizhi Decoction associated prescriptions are used for strengthening middle energizer and nourishing ying and wei.For the treatment of insomnia caused by the disordered function of ying-wei in the dispersion,Mahuang Decoction associated prescriptions are used to relieve the exterior and eliminate the pathogen for insomnia patients with the manifestations of the attack of exopathogens,and Xiao Chaihu Decoction associated prescriptions are used to dredge the triple energizer for insomnia patients with the dysfunction of the triple energizer.For the treatment of insomnia caused by the disordered function of ying-wei in the divergence,Rhei Radix et Rhizoma associated bitter-cold prescriptions are used to purge the interior heat for insomnia patients with abundant interior heat syndrome,Gypsum Fibrosum associated pungent-cold prescriptions are used to release muscles and clear heat for insomnia patients with the interior heat complicated by exterior syndrome,Natrii Sulfas Exsiccatus associated salty-cold prescriptions are used to clear heat,moisten dryness and dissipate the masses for insomnia patients with interior heat complicated by dryness syndrome,sour-cold medicines are used to clear heat and remove retained water,supplement deficiency and relieve exterior for insomnia patients with interior heat complicated by water-retention syndrome,deficiency syndrome and exterior syndrome,and Ophiopogonis Radix associated prescriptions and Lillli Bulbus associated prescriptions are used to clear heat and nourish ying for insomnia patients with the consumption of ying and yin.For the treatment of insomnia caused by the disordered function of ying-wei in the aggregation,the compatibility of Poria and Cinnamomi Ramulus is used for warming yang and resolving fluid retention in patients with fluid retention,Taohong Siwu Decoction associated prescriptions are used to activate blood and remove stasis in patients with predominance of blood stasis syndrome,the compatibility of Poria and Paeoniae Radix Alba are used to treat retained water and blood stasis in patients with water-blood co-morbidity.Treating insomnia caused by disharmony between ying and wei from the perspective of the function of ying-wei in the generation,dispersion,divergence and aggregation is aimed at the core pathogenesis of insomnia,which makes the treatment easy to be carried out,and can provide reference for clinical differentiation and treatment of insomnia.
7.A retrospective study of occlusal reconstruction in patients with old jaw fractures and dentition defects
Ming-Chao DING ; Bo-Ya JING ; Jin SHI ; Liu YANG ; Xiang-Dong LIU ; Jing-Fu WANG ; Shuang QU ; Jia-Wu LIANG ; Zi-Hao TANG ; Jin-Long ZHAO ; Lei TIAN
Chinese Journal of Traumatology 2024;27(5):272-278
Purpose::This study evaluated the methods and clinical effects of multidisciplinary collaborative treatment for occlusal reconstruction in patients with old jaw fractures and dentition defects.Methods::Patients with old jaw fractures and dentition defects who underwent occlusal reconstruction at the Third Affiliated Hospital of Air Force Military Medical University from January 2018 to December 2022 were enrolled. Clinical treatment was classified into 3 phases. In phase I, techniques such as orthognathic surgery, microsurgery, and distraction osteogenesis were employed to reconstruct the correct 3-dimensional (3D) jaw position relationship. In phase II, bone augmentation and soft tissue management techniques were utilized to address insufficient alveolar bone mass and poor gingival soft tissue conditions. In phase III, implant-supported overdentures or fixed dentures were used for occlusal reconstruction. A summary of treatment methods, clinical efficacy evaluation, comparative analysis of imageological examinations, and satisfaction questionnaire survey were utilized to evaluate the therapeutic efficacy in patients with traumatic old jaw fractures and dentition defects. All data are summarized using the arithmetic mean ± standard deviation and compared using independent sample t-tests. Results::In 15 patients with old jaw fractures and dentition defects (an average age of 32 years, ranging from 18 to 53 years), there were 7 cases of malocclusion of single maxillary fracture, 6 of malocclusion of single mandible fracture, and 2 of malocclusion of both maxillary and mandible fractures. There were 5 patients with single maxillary dentition defects, 2 with single mandibular dentition defects, and 8 with both maxillary and mandibular dentition defects. To reconstruct the correct 3D jaw positional relationship, 5 patients underwent Le Fort I osteotomy of the maxilla, 3 underwent bilateral sagittal split ramus osteotomy of the mandible, 4 underwent open reduction and internal fixation for old jaw fractures, 3 underwent temporomandibular joint surgery, and 4 underwent distraction osteogenesis. All patients underwent jawbone augmentation, of whom 4 patients underwent a free composite vascularized bone flap (26.66%) and the remaining patients underwent local alveolar bone augmentation. Free gingival graft and connective tissue graft were the main methods for soft tissue augmentation (73.33%). The 15 patients received 81 implants, of whom 11 patients received implant-supported fixed dentures and 4 received implant-supported removable dentures. The survival rate of all implants was 93.82%. The final imageological examination of 15 patients confirmed that the malocclusion was corrected, and the clinical treatment ultimately achieved occlusal function reconstruction. The patient satisfaction questionnaire survey showed that they were satisfied with the efficacy, phonetics, aesthetics, and comfort after treatment.Conclusion::Occlusal reconstruction of old jaw fractures and dentition defects requires a phased sequential comprehensive treatment, consisting of 3D spatial jaw correction, alveolar bone augmentation and soft tissue augmentation, and implant-supported occlusal reconstruction, achieving satisfactory clinical therapeutic efficacy.
8.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
9.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
10.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.

Result Analysis
Print
Save
E-mail