1.Interpretation and thoughts on the formulation and revision of the standards for exogenous harmful residues in traditional Chinese medicinal materials in the Chinese Pharmacopoeia 2025 Edition
WANG Ying ; SHEN Mingrui ; LIU Yuanxi ; ZUO Tiantian ; WANG Dandan ; HE Yi ; CHENG Xianlong ; JIN Hongyu ; LIU Yongli ; WEI Feng ; MA Shuangcheng
Drug Standards of China 2025;26(1):083-092
As people’s attention to health continues to increase, the market demand for traditional Chinese medicine (TCM) is growing steadily. The quality and safety of Chinese medicinal materials have attracted unprecedented social attention. In particular, the issue of exogenous harmful residue pollution in TCM has become a hot topic of concern for both regulatory authorities and society. The Chinese Pharmacopoeia 2025 Edition further refines the detection methods and limit standards for exogenous harmful residues in TCM. This not only reflects China’s high-level emphasis on the quality and safety of TCM but also demonstrates the continuous progress made by China in the field of TCM safety supervision. Basis on this study, by systematically reviewing the development history of the detection standards for exogenous harmful residues in TCM and analyzing the revisions and updates of these detection standards in the Chinese Pharmacopoeia 2025 Edition, deeply explores the key points of the changes in the monitoring standards for exogenous harmful residues in TCM in the Chinese Pharmacopoeia 2025 Edition. Moreover, it interprets the future development directions of the detection of exogenous residues in TCM, aiming to provide a reference for the formulation of TCM safety supervision policies.
2.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
3.Construction and application of the "Huaxi Hongyi" large medical model
Rui SHI ; Bing ZHENG ; Xun YAO ; Hao YANG ; Xuchen YANG ; Siyuan ZHANG ; Zhenwu WANG ; Dongfeng LIU ; Jing DONG ; Jiaxi XIE ; Hu MA ; Zhiyang HE ; Cheng JIANG ; Feng QIAO ; Fengming LUO ; Jin HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):587-593
Objective To construct large medical model named by "Huaxi HongYi"and explore its application effectiveness in assisting medical record generation. Methods By the way of a full-chain medical large model construction paradigm of "data annotation - model training - scenario incubation", through strategies such as multimodal data fusion, domain adaptation training, and localization of hardware adaptation, "Huaxi HongYi" with 72 billion parameters was constructed. Combined with technologies such as speech recognition, knowledge graphs, and reinforcement learning, an application system for assisting in the generation of medical records was developed. Results Taking the assisted generation of discharge records as an example, in the pilot department, after using the application system, the average completion times of writing a medical records shortened (21 min vs. 5 min) with efficiency increased by 3.2 time, the accuracy rate of the model output reached 92.4%. Conclusion It is feasible for medical institutions to build independently controllable medical large models and incubate various applications based on these models, providing a reference pathway for artificial intelligence development in similar institutions.
4.Metabolomics and pharmacokinetics of Corni Fructus in ameliorating myocardial ischemic injury.
Xiang-Feng LIU ; Yu WU ; Chao-Yan YANG ; Hua-Wei LIAO ; Yan-Fen CHEN ; Xin HE ; Ying-Fang WANG ; Jin-Ru LIANG
China Journal of Chinese Materia Medica 2025;50(5):1363-1376
This study aims to investigate the ameliorating effect of Corni Fructus(CF) on the myocardial ischemic injury and the pharmacokinetic properties of characteristic components of CF. The mouse model of isoproterenol-induced myocardial ischemia was established and administrated with the aqueous extract of CF. The general efficacy of CF in ameliorating the myocardial ischemic injury was evaluated based on the cardiac histopathology and the levels of myocardial injury markers: creatine kinase isoenzyme(CK-MB) and cardiac troponin I(cTn-I). The metabolomics analysis was carried out for the heart and serum samples of mice to screen the biomarkers of CF in ameliorating the myocardial ischemic injury and then the predicted biomarkers were submitted to metabolic pathway enrichment. The pharmacokinetic analysis was performed for morroniside, loganin, and cornuside Ⅰ in mouse heart and serum samples to obtain the pharmacokinetic parameters of these components. The pharmacokinetic parameters were then integrated on the basis of self-defined weighting coefficients to simulate an integrated pharmacokinetic profile of CF iridoid glycosides in the heart and serum of the mouse model of myocardial ischemia. The results indicated that CF reduced the pathological damage to cardiac cells and tissue(hematoxylin-eosin staining) and lowered the levels of CK-MB and cTn-I in the serum of the mouse model of myocardial ischemia(P<0.01). Metabolomics analysis screed out 31 endogenous metabolites in the heart and 35 in the serum as biomarkers of CF in ameliorating the myocardial ischemic injury. These biomarkers were altered by modeling and restored by CF. Six metabolic pathways in the heart and 5 in the serum were enriched based on these metabolic markers. The main integrated pharmacokinetic parameters of CF iridoid glycosides were T_(max)=1 h, t_(1/2)=(1.52±0.05) h in the heart and T_(max)=1 h, t_(1/2)=(1.56±0.50) h in the serum. Both concentration-time curves showed a double-peak phenomenon. In conclusion, CF demonstrated the cardioprotective effect by regulating metabolic pathways such as taurine and hypotaurine metabolism, and pantothenic acid and coenzyme A biosynthesis. The integrated pharmacokinetics reflect the general pharmacokinetic properties of characteristic components in CF.
Animals
;
Cornus/chemistry*
;
Mice
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Myocardial Ischemia/metabolism*
;
Humans
;
Troponin I/metabolism*
;
Myocardium/pathology*
;
Disease Models, Animal
;
Biomarkers/metabolism*
;
Creatine Kinase, MB Form/metabolism*
5.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
6.Observation on the therapeutic effect of a modified Devine procedure with subcutaneous sliding fixation method for concealed penis.
Mohammed Abdulkarem AL-QAISI ; Hai-Fu TIAN ; Jia-Jin FENG ; Ke-Ming CHEN ; Jin ZHANG ; Yun-Shang TUO ; Xue-Hao WANG ; Bin-Cheng HUANG ; Muhammad Arslan Ul HASSAN ; Rui HE ; Guang-Yong LI
Asian Journal of Andrology 2025;27(4):470-474
To evaluate the therapeutic effect of a modified Devine procedure with a subcutaneous sliding fixation method for the treatment of congenital concealed penis, we retrospectively selected 45 patients with congenital concealed penises who were admitted to General Hospital of Ningxia Medical University (Yinchuan, China) between September 2020 and November 2023. In all cases, the penis was observed to be short, and retracting the skin at the base revealed a normal penile body, which immediately returned to its original position upon release. All patients underwent the modified Devine procedure with subcutaneous sliding fixation and completed a 12-week postoperative follow-up. A statistically significant increase in penile length was observed postoperatively, with the median length increasing from 4.0 (interquartile range [IQR]: 3.5-4.8; 95% confidence interval [CI]: 3.9-4.4) cm to 8.0 (IQR: 7.8-8.0; 95% CI: 7.7-7.9) cm, with P < 0.001. The parents were satisfied with the outcomes, including increased penile length, improved hygiene, and enhanced esthetics. Except for mild foreskin edema in all cases, no complications (such as infections, skin necrosis, or penile retraction) were observed. The edema was resolved within 4 weeks after the operation. This study demonstrates that the modified Devine procedure utilizing the subcutaneous sliding fixation method yields excellent outcomes with minimal postoperative complications, reduced penile retraction, and high satisfaction rates among patients and their families.
Humans
;
Male
;
Penis/abnormalities*
;
Retrospective Studies
;
Urologic Surgical Procedures, Male/methods*
;
Treatment Outcome
;
Child
;
Plastic Surgery Procedures/methods*
7.Analysis of Hormone Levels in Patients with Hematological Diseases Before and After Hematopoietic Stem Cell Tansplantation.
Fen LI ; Yu-Jin LI ; Jie ZHAO ; Zhi-Xiang LU ; Xiao-Li GAO ; Hai-Tao HE ; Xue-Zhong GU ; Feng-Yu CHEN ; Hui-Yuan LI ; Qi SA ; Lin ZHANG ; Peng HU
Journal of Experimental Hematology 2025;33(5):1443-1452
OBJECTIVE:
By analyzing the hormone secretion of the adenohypophysis, thyroid glands, gonads, and adrenal cortex in patients with hematological diseases before and after hematopoietic stem cell transplantation (HSCT), this study aims to preliminarily explore the effect of HSCT on patients' hormone secretion and glandular damage.
METHODS:
The baseline data of 209 hematological disease patients who underwent HSCT in our hospital from January 2019 to December 2023, as well as the data on the levels of hormones secreted by the adenohypophysis, thyroid glands, gonads and adrenal cortex before and after HSCT were collected, and the changes in hormone levels before and after transplantation were analyzed.
RESULTS:
After allogeneic HSCT, the levels of thyroid-stimulating hormone (TSH), triiodothyronine (T3), free triiodothyronine (FT3) and estradiol (E2) decreased, while the levels of luteinizing hormone (LH) and follicle- stimulating hormone (FSH) increased. The T3 level of patients with decreased TSH after transplantation was lower than that of those with increased TSH after transplantation. In female patients, the levels of prolactin (PRL), progesterone (Prog), and testosterone (Testo) decreased after HSCT. Testo and PRL decreased when there was a donor-recipient sex mismatch, and the levels of adrenocorticotropic hormone (ACTH) and cortisol (COR) decreased when the HLA matching was haploidentical. The levels of T3, FT3, and PRL decreased after autologous HSCT. In allogeneic HSCT patients, the levels of TSH, T4, T3, FT3, and ACTH in the group with graft-versus-host disease (GVHD) were significantly lower than those in the group without GVHD. Logistic regression analysis showed the changes in hormone levels after transplantation were not correlated with factors such as the patient's sex, age, or whether the blood types of the donor and the recipient are the same.
CONCLUSION
HSCT can affect the endocrine function of patients with hematological diseases, mainly affecting target glandular organs such as the thyroid, gonads, and adrenal glands, while the secretory function of the adenohypophysis is less affected.
Humans
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Hematologic Diseases/blood*
;
Follicle Stimulating Hormone/blood*
;
Triiodothyronine/blood*
;
Luteinizing Hormone/blood*
;
Thyroid Gland/metabolism*
;
Estradiol/blood*
;
Thyrotropin/blood*
;
Gonads/metabolism*
;
Adult
;
Middle Aged
;
Adrenocorticotropic Hormone/blood*
;
Hormones/metabolism*
;
Adrenal Cortex/metabolism*
;
Prolactin
8.Erratum: Author Correction: Targeting of AUF1 to vascular endothelial cells as a novel anti-aging therapy.
Jian HE ; Ya-Feng JIANG ; Liu LIANG ; Du-Jin WANG ; Wen-Xin WEI ; Pan-Pan JI ; Yao-Chan HUANG ; Hui SONG ; Xiao-Ling LU ; Yong-Xiang ZHAO
Journal of Geriatric Cardiology 2025;22(9):834-834
[This corrects the article DOI: 10.11909/j.issn.1671-5411.2017.08.005.].
9.Self-degradable "gemini-like" ionizable lipid-mediated delivery of siRNA for subcellular-specific gene therapy of hepatic diseases.
Qiu WANG ; Bin WAN ; Yao FENG ; Zimeng YANG ; Dan LI ; Fan LIU ; Ya GAO ; Chang LI ; Yanhua LIU ; Yongbing SUN ; Zhonggui HE ; Cong LUO ; Jin SUN ; Qikun JIANG
Acta Pharmaceutica Sinica B 2025;15(6):2867-2883
Tailored lipid nanoparticles (LNPs)-mediated small interfering RNA (siRNA) nanomedicines show promise in treating liver disease, such as acute liver injury (ALI) and non-alcoholic steatohepatitis (NASH). However, constructing LNPs that address biosafety concerns, ensure efficient delivery, and target specific hepatic subcellular fractions has been challenging. To evade above obstacles, we develop three novel self-degradable "gemini-like" ionizable lipids (SS-MA, SS-DC, SS-MH) by incorporating disulfide bonds and modifying the length of ester bond and tertiary amino head. Our findings reveal that the disulfide-bond-bridged LNPs exhibit reduction-responsive drug release, improving both biosafety and siRNA delivery efficiency. Furthermore, the distance of ester bond and tertiary amino head significantly influences the LNPs' pK a, thereby affecting endosomal escape, hemolytic efficiency, absorption capacity of ApoE, uptake efficiency of hepatocytes and liver accumulation. We also develop the modified-mannose LNPs (M-LNP) to target liver macrophages specifically. The optimized M-MH_LNP@TNFα exhibits potential in preventing ALI by decreasing tumor necrosis factor α (TNFα) levels in the macrophages, while MH_LNP@DGAT2 could treat NASH by selectively degrading diacylglycerol O-acyltransferase 2 (DGAT2) in the hepatocytes. Our findings provide new insights into developing novel highly effective and low-toxic "gemini-like" ionizable lipids for constructing LNPs, potentially achieving more effective treatment for hepatic diseases.
10.Psychological stress-activated NR3C1/NUPR1 axis promotes ovarian tumor metastasis.
Bin LIU ; Wen-Zhe DENG ; Wen-Hua HU ; Rong-Xi LU ; Qing-Yu ZHANG ; Chen-Feng GAO ; Xiao-Jie HUANG ; Wei-Guo LIAO ; Jin GAO ; Yang LIU ; Hiroshi KURIHARA ; Yi-Fang LI ; Xu-Hui ZHANG ; Yan-Ping WU ; Lei LIANG ; Rong-Rong HE
Acta Pharmaceutica Sinica B 2025;15(6):3149-3162
Ovarian tumor (OT) is the most lethal form of gynecologic malignancy, with minimal improvements in patient outcomes over the past several decades. Metastasis is the leading cause of ovarian cancer-related deaths, yet the underlying mechanisms remain poorly understood. Psychological stress is known to activate the glucocorticoid receptor (NR3C1), a factor associated with poor prognosis in OT patients. However, the precise mechanisms linking NR3C1 signaling and metastasis have yet to be fully elucidated. In this study, we demonstrate that chronic restraint stress accelerates epithelial-mesenchymal transition (EMT) and metastasis in OT through an NR3C1-dependent mechanism involving nuclear protein 1 (NUPR1). Mechanistically, NR3C1 directly regulates the transcription of NUPR1, which in turn increases the expression of snail family transcriptional repressor 2 (SNAI2), a key driver of EMT. Clinically, elevated NR3C1 positively correlates with NUPR1 expression in OT patients, and both are positively associated with poorer prognosis. Overall, our study identified the NR3C1/NUPR1 axis as a critical regulatory pathway in psychological stress-induced OT metastasis, suggesting a potential therapeutic target for intervention in OT metastasis.

Result Analysis
Print
Save
E-mail