1.Global, Regional, and National Trends in Liver Disease-Related Mortality Across 112 Countries From 1990 to 2021, With Projections to 2050:Comprehensive Analysis of the WHO Mortality Database
Jong Woo HAHN ; Selin WOO ; Jaeyu PARK ; Hyeri LEE ; Hyeon Jin KIM ; Jae Sung KO ; Jin Soo MOON ; Masoud RAHMATI ; Lee SMITH ; Jiseung KANG ; Damiano PIZZOL ; Mark A TULLY ; Elena DRAGIOTI ; Guillermo F. LÓPEZ SÁNCHEZ ; Kwanjoo LEE ; Yeonjung HA ; Jinseok LEE ; Hayeon LEE ; Sang Youl RHEE ; Yejun SON ; Soeun KIM ; Dong Keon YON
Journal of Korean Medical Science 2024;39(46):e292-
Background:
Liver disease causes over two million deaths annually worldwide, comprising approximately 4% of all global fatalities. We aimed to analyze liver disease-related mortality trends from 1990 to 2021 using the World Health Organization (WHO) Mortality Database and forecast global liver disease-related mortality rates up to 2050.
Methods:
This study examined age-standardized liver disease-related death rates from 1990 to 2021, employing data from the WHO Mortality Database across 112 countries across five continents. The rates over time were calculated using a locally weighted scatter plot smoother curve, with weights assigned based on the population of each country. Furthermore, this study projected liver disease-related mortality rates up to 2050 using a Bayesian age-periodcohort (BAPC) model. Additionally, a decomposition analysis was conducted to discern influencing factors such as population growth, aging, and epidemiological changes.
Results:
The estimated global age-standardized liver disease-related mortality rates surged significantly from 1990 to 2021 across 112 countries, rising from 103.4 deaths per 1,000,000 people (95% confidence interval [CI], 88.16, 118.74) in 1990 to 173.0 deaths per 1,000,000 people (95% CI, 155.15, 190.95) in 2021. This upward trend was particularly pronounced in low- and middle-income countries, in Africa, and in populations aged 65 years and older.Moreover, age-standardized liver disease-related mortality rates were correlated with a lower Human Development Index (P < 0.001) and sociodemographic index (P = 0.001). According to the BAPC model, the projected trend indicated a sustained and substantial decline in liver disease-related mortality rates, with an estimated decrease from 185.08 deaths per 1,000,000 people (95% CI, 179.79, 190.63) in 2021 to 156.29 (112.32, 214.77) in 2050. From 1990 to 2021, age-standardized liver disease-related deaths surged primarily due to epidemiological changes, whereas from 1990 to 2050, the impact of population aging and growth became the primary contributing factors to the overall increase.
Conclusion
Global age-standardized liver disease-related mortality has increased significantly and continues to emerge as a crucial global public health issue. Further investigation into liver disease-related mortality rates in Africa is needed, and updating policies is necessary to effectively manage the global burden of liver disease.
2.Global, Regional, and National Trends in Liver Disease-Related Mortality Across 112 Countries From 1990 to 2021, With Projections to 2050:Comprehensive Analysis of the WHO Mortality Database
Jong Woo HAHN ; Selin WOO ; Jaeyu PARK ; Hyeri LEE ; Hyeon Jin KIM ; Jae Sung KO ; Jin Soo MOON ; Masoud RAHMATI ; Lee SMITH ; Jiseung KANG ; Damiano PIZZOL ; Mark A TULLY ; Elena DRAGIOTI ; Guillermo F. LÓPEZ SÁNCHEZ ; Kwanjoo LEE ; Yeonjung HA ; Jinseok LEE ; Hayeon LEE ; Sang Youl RHEE ; Yejun SON ; Soeun KIM ; Dong Keon YON
Journal of Korean Medical Science 2024;39(46):e292-
Background:
Liver disease causes over two million deaths annually worldwide, comprising approximately 4% of all global fatalities. We aimed to analyze liver disease-related mortality trends from 1990 to 2021 using the World Health Organization (WHO) Mortality Database and forecast global liver disease-related mortality rates up to 2050.
Methods:
This study examined age-standardized liver disease-related death rates from 1990 to 2021, employing data from the WHO Mortality Database across 112 countries across five continents. The rates over time were calculated using a locally weighted scatter plot smoother curve, with weights assigned based on the population of each country. Furthermore, this study projected liver disease-related mortality rates up to 2050 using a Bayesian age-periodcohort (BAPC) model. Additionally, a decomposition analysis was conducted to discern influencing factors such as population growth, aging, and epidemiological changes.
Results:
The estimated global age-standardized liver disease-related mortality rates surged significantly from 1990 to 2021 across 112 countries, rising from 103.4 deaths per 1,000,000 people (95% confidence interval [CI], 88.16, 118.74) in 1990 to 173.0 deaths per 1,000,000 people (95% CI, 155.15, 190.95) in 2021. This upward trend was particularly pronounced in low- and middle-income countries, in Africa, and in populations aged 65 years and older.Moreover, age-standardized liver disease-related mortality rates were correlated with a lower Human Development Index (P < 0.001) and sociodemographic index (P = 0.001). According to the BAPC model, the projected trend indicated a sustained and substantial decline in liver disease-related mortality rates, with an estimated decrease from 185.08 deaths per 1,000,000 people (95% CI, 179.79, 190.63) in 2021 to 156.29 (112.32, 214.77) in 2050. From 1990 to 2021, age-standardized liver disease-related deaths surged primarily due to epidemiological changes, whereas from 1990 to 2050, the impact of population aging and growth became the primary contributing factors to the overall increase.
Conclusion
Global age-standardized liver disease-related mortality has increased significantly and continues to emerge as a crucial global public health issue. Further investigation into liver disease-related mortality rates in Africa is needed, and updating policies is necessary to effectively manage the global burden of liver disease.
3.Global, Regional, and National Trends in Liver Disease-Related Mortality Across 112 Countries From 1990 to 2021, With Projections to 2050:Comprehensive Analysis of the WHO Mortality Database
Jong Woo HAHN ; Selin WOO ; Jaeyu PARK ; Hyeri LEE ; Hyeon Jin KIM ; Jae Sung KO ; Jin Soo MOON ; Masoud RAHMATI ; Lee SMITH ; Jiseung KANG ; Damiano PIZZOL ; Mark A TULLY ; Elena DRAGIOTI ; Guillermo F. LÓPEZ SÁNCHEZ ; Kwanjoo LEE ; Yeonjung HA ; Jinseok LEE ; Hayeon LEE ; Sang Youl RHEE ; Yejun SON ; Soeun KIM ; Dong Keon YON
Journal of Korean Medical Science 2024;39(46):e292-
Background:
Liver disease causes over two million deaths annually worldwide, comprising approximately 4% of all global fatalities. We aimed to analyze liver disease-related mortality trends from 1990 to 2021 using the World Health Organization (WHO) Mortality Database and forecast global liver disease-related mortality rates up to 2050.
Methods:
This study examined age-standardized liver disease-related death rates from 1990 to 2021, employing data from the WHO Mortality Database across 112 countries across five continents. The rates over time were calculated using a locally weighted scatter plot smoother curve, with weights assigned based on the population of each country. Furthermore, this study projected liver disease-related mortality rates up to 2050 using a Bayesian age-periodcohort (BAPC) model. Additionally, a decomposition analysis was conducted to discern influencing factors such as population growth, aging, and epidemiological changes.
Results:
The estimated global age-standardized liver disease-related mortality rates surged significantly from 1990 to 2021 across 112 countries, rising from 103.4 deaths per 1,000,000 people (95% confidence interval [CI], 88.16, 118.74) in 1990 to 173.0 deaths per 1,000,000 people (95% CI, 155.15, 190.95) in 2021. This upward trend was particularly pronounced in low- and middle-income countries, in Africa, and in populations aged 65 years and older.Moreover, age-standardized liver disease-related mortality rates were correlated with a lower Human Development Index (P < 0.001) and sociodemographic index (P = 0.001). According to the BAPC model, the projected trend indicated a sustained and substantial decline in liver disease-related mortality rates, with an estimated decrease from 185.08 deaths per 1,000,000 people (95% CI, 179.79, 190.63) in 2021 to 156.29 (112.32, 214.77) in 2050. From 1990 to 2021, age-standardized liver disease-related deaths surged primarily due to epidemiological changes, whereas from 1990 to 2050, the impact of population aging and growth became the primary contributing factors to the overall increase.
Conclusion
Global age-standardized liver disease-related mortality has increased significantly and continues to emerge as a crucial global public health issue. Further investigation into liver disease-related mortality rates in Africa is needed, and updating policies is necessary to effectively manage the global burden of liver disease.
4.Global, Regional, and National Trends in Liver Disease-Related Mortality Across 112 Countries From 1990 to 2021, With Projections to 2050:Comprehensive Analysis of the WHO Mortality Database
Jong Woo HAHN ; Selin WOO ; Jaeyu PARK ; Hyeri LEE ; Hyeon Jin KIM ; Jae Sung KO ; Jin Soo MOON ; Masoud RAHMATI ; Lee SMITH ; Jiseung KANG ; Damiano PIZZOL ; Mark A TULLY ; Elena DRAGIOTI ; Guillermo F. LÓPEZ SÁNCHEZ ; Kwanjoo LEE ; Yeonjung HA ; Jinseok LEE ; Hayeon LEE ; Sang Youl RHEE ; Yejun SON ; Soeun KIM ; Dong Keon YON
Journal of Korean Medical Science 2024;39(46):e292-
Background:
Liver disease causes over two million deaths annually worldwide, comprising approximately 4% of all global fatalities. We aimed to analyze liver disease-related mortality trends from 1990 to 2021 using the World Health Organization (WHO) Mortality Database and forecast global liver disease-related mortality rates up to 2050.
Methods:
This study examined age-standardized liver disease-related death rates from 1990 to 2021, employing data from the WHO Mortality Database across 112 countries across five continents. The rates over time were calculated using a locally weighted scatter plot smoother curve, with weights assigned based on the population of each country. Furthermore, this study projected liver disease-related mortality rates up to 2050 using a Bayesian age-periodcohort (BAPC) model. Additionally, a decomposition analysis was conducted to discern influencing factors such as population growth, aging, and epidemiological changes.
Results:
The estimated global age-standardized liver disease-related mortality rates surged significantly from 1990 to 2021 across 112 countries, rising from 103.4 deaths per 1,000,000 people (95% confidence interval [CI], 88.16, 118.74) in 1990 to 173.0 deaths per 1,000,000 people (95% CI, 155.15, 190.95) in 2021. This upward trend was particularly pronounced in low- and middle-income countries, in Africa, and in populations aged 65 years and older.Moreover, age-standardized liver disease-related mortality rates were correlated with a lower Human Development Index (P < 0.001) and sociodemographic index (P = 0.001). According to the BAPC model, the projected trend indicated a sustained and substantial decline in liver disease-related mortality rates, with an estimated decrease from 185.08 deaths per 1,000,000 people (95% CI, 179.79, 190.63) in 2021 to 156.29 (112.32, 214.77) in 2050. From 1990 to 2021, age-standardized liver disease-related deaths surged primarily due to epidemiological changes, whereas from 1990 to 2050, the impact of population aging and growth became the primary contributing factors to the overall increase.
Conclusion
Global age-standardized liver disease-related mortality has increased significantly and continues to emerge as a crucial global public health issue. Further investigation into liver disease-related mortality rates in Africa is needed, and updating policies is necessary to effectively manage the global burden of liver disease.
5.Long-term gastrointestinal and hepatobiliary outcomes of COVID-19: A multinational population-based cohort study from South Korea, Japan, and the UK
Kwanjoo LEE ; Jaeyu PARK ; Jinseok LEE ; Myeongcheol LEE ; Hyeon Jin KIM ; Yejun SON ; Sang Youl RHEE ; Lee SMITH ; Masoud RAHMATI ; Jiseung KANG ; Hayeon LEE ; Yeonjung HA ; Dong Keon YON
Clinical and Molecular Hepatology 2024;30(4):943-958
Background/Aims:
Considering emerging evidence on long COVID, comprehensive analyses of the post-acute complications of SARS-CoV-2 infection in the gastrointestinal and hepatobiliary systems are needed. We aimed to investigate the impact of COVID-19 on the long-term risk of gastrointestinal and hepatobiliary diseases and other digestive abnormalities.
Methods:
We used three large-scale population-based cohorts: the Korean cohort (discovery cohort), the Japanese cohort (validation cohort-A), and the UK Biobank (validation cohort-B). A total of 10,027,506 Korean, 12,218,680 Japanese, and 468,617 UK patients aged ≥20 years who had SARS-CoV-2 infection between 2020 and 2021 were matched to non-infected controls. Seventeen gastrointestinal and eight hepatobiliary outcomes as well as nine other digestive abnormalities following SARS-CoV-2 infection were identified and compared with controls.
Results:
The discovery cohort revealed heightened risks of gastrointestinal diseases (HR 1.15; 95% CI 1.08–1.22), hepatobiliary diseases (HR 1.30; 95% CI 1.09–1.55), and other digestive abnormalities (HR 1.05; 95% CI 1.01–1.10) beyond the first 30 days of infection, after exposure-driven propensity score-matching. The risk was pronounced according to the COVID-19 severity. The SARS-CoV-2 vaccination was found to lower the risk of gastrointestinal diseases but did not affect hepatobiliary diseases and other digestive disorders. The results derived from validation cohorts were consistent. The risk profile was most pronounced during the initial 3 months; however, it persisted for >6 months in validation cohorts, but not in the discovery cohort.
Conclusions
The incidence of gastrointestinal disease, hepatobiliary disease, and other digestive abnormalities increased in patients with SARS-CoV-2 infection during the post-acute phase.
6.2021 Clinical Practice Guidelines for Diabetes Mellitus in Korea
Kyu Yeon HUR ; Min Kyong MOON ; Jong Suk PARK ; Soo-Kyung KIM ; Seung-Hwan LEE ; Jae-Seung YUN ; Jong Ha BAEK ; Junghyun NOH ; Byung-Wan LEE ; Tae Jung OH ; Suk CHON ; Ye Seul YANG ; Jang Won SON ; Jong Han CHOI ; Kee Ho SONG ; Nam Hoon KIM ; Sang Yong KIM ; Jin Wha KIM ; Sang Youl RHEE ; You-Bin LEE ; Sang-Man JIN ; Jae Hyeon KIM ; Chong Hwa KIM ; Dae Jung KIM ; SungWan CHUN ; Eun-Jung RHEE ; Hyun Min KIM ; Hyun Jung KIM ; Donghyun JEE ; Jae Hyun KIM ; Won Seok CHOI ; Eun-Young LEE ; Kun-Ho YOON ; Seung-Hyun KO ;
Diabetes & Metabolism Journal 2021;45(4):461-481
The Committee of Clinical Practice Guidelines of the Korean Diabetes Association (KDA) updated the previous clinical practice guidelines for Korean adults with diabetes and prediabetes and published the seventh edition in May 2021. We performed a comprehensive systematic review of recent clinical trials and evidence that could be applicable in real-world practice and suitable for the Korean population. The guideline is provided for all healthcare providers including physicians, diabetes experts, and certified diabetes educators across the country who manage patients with diabetes or the individuals at the risk of developing diabetes mellitus. The recommendations for screening diabetes and glucose-lowering agents have been revised and updated. New sections for continuous glucose monitoring, insulin pump use, and non-alcoholic fatty liver disease in patients with diabetes mellitus have been added. The KDA recommends active vaccination for coronavirus disease 2019 in patients with diabetes during the pandemic. An abridgement that contains practical information for patient education and systematic management in the clinic was published separately.
7.2021 Clinical Practice Guidelines for Diabetes Mellitus in Korea
Kyu Yeon HUR ; Min Kyong MOON ; Jong Suk PARK ; Soo-Kyung KIM ; Seung-Hwan LEE ; Jae-Seung YUN ; Jong Ha BAEK ; Junghyun NOH ; Byung-Wan LEE ; Tae Jung OH ; Suk CHON ; Ye Seul YANG ; Jang Won SON ; Jong Han CHOI ; Kee Ho SONG ; Nam Hoon KIM ; Sang Yong KIM ; Jin Wha KIM ; Sang Youl RHEE ; You-Bin LEE ; Sang-Man JIN ; Jae Hyeon KIM ; Chong Hwa KIM ; Dae Jung KIM ; SungWan CHUN ; Eun-Jung RHEE ; Hyun Min KIM ; Hyun Jung KIM ; Donghyun JEE ; Jae Hyun KIM ; Won Seok CHOI ; Eun-Young LEE ; Kun-Ho YOON ; Seung-Hyun KO ;
Diabetes & Metabolism Journal 2021;45(4):461-481
The Committee of Clinical Practice Guidelines of the Korean Diabetes Association (KDA) updated the previous clinical practice guidelines for Korean adults with diabetes and prediabetes and published the seventh edition in May 2021. We performed a comprehensive systematic review of recent clinical trials and evidence that could be applicable in real-world practice and suitable for the Korean population. The guideline is provided for all healthcare providers including physicians, diabetes experts, and certified diabetes educators across the country who manage patients with diabetes or the individuals at the risk of developing diabetes mellitus. The recommendations for screening diabetes and glucose-lowering agents have been revised and updated. New sections for continuous glucose monitoring, insulin pump use, and non-alcoholic fatty liver disease in patients with diabetes mellitus have been added. The KDA recommends active vaccination for coronavirus disease 2019 in patients with diabetes during the pandemic. An abridgement that contains practical information for patient education and systematic management in the clinic was published separately.
8.Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities.
Sungjae YANG ; Yong KIM ; Deok JEONG ; Jun Ho KIM ; Sunggyu KIM ; Young Jin SON ; Byong Chul YOO ; Eun Jeong JEONG ; Tae Woong KIM ; In Sook HAN LEE ; Jae Youl CHO
Biomolecules & Therapeutics 2016;24(6):595-603
(E)-3-Phenyl-1-(2-pyrrolyl)-2-propenone (PPP) is a pyrrole derivative of chalcone, in which the B-ring of chalcone linked to β-carbon is replaced by pyrrole group. While pyrrole has been studied for possible Src inhibition activity, chalcone, especially the substituents on the B-ring, has shown pharmaceutical, anti-inflammatory, and anti-oxidant properties via inhibition of NF-κB activity. Our study is aimed to investigate whether this novel synthetic compound retains or enhances the pharmaceutically beneficial activities from the both structures. For this purpose, inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 cells were analyzed. Nitric oxide (NO) production, inducible NO synthase (iNOS) and tumor necrosis factor-α (TNF-α) mRNA expression, and the intracellular inflammatory signaling cascade were measured. Interestingly, PPP strongly inhibited NO release in a dose-dependent manner. To further investigate this anti-inflammatory activity, we identified molecular pathways by immunoblot analyses of nuclear fractions and whole cell lysates prepared from LPS-stimulated RAW264.7 cells with or without PPP pretreatment. The nuclear levels of p50, c-Jun, and c-Fos were significantly inhibited when cells were exposed to PPP. Moreover, according to the luciferase reporter gene assay after cotransfection with either TRIF or MyD88 in HEK293 cells, NF-κB-mediated luciferase activity dose-dependently diminished. Additionally, it was confirmed that PPP dampens the upstream signaling cascade of NF-κB and AP-1 activation. Thus, PPP inhibited Syk, Src, and TAK1 activities induced by LPS or induced by overexpression of these genes. Therefore, our results suggest that PPP displays anti-inflammatory activity via inhibition of Syk, Src, and TAK1 activity, which may be developed as a novel anti-inflammatory drug.
Chalcone*
;
Genes, Reporter
;
HEK293 Cells
;
Luciferases
;
Macrophages
;
Necrosis
;
Nitric Oxide
;
Nitric Oxide Synthase
;
Phosphotransferases*
;
RNA, Messenger
;
Transcription Factor AP-1
9.Preoperative Measurement of Submandibular Gland Stone Size.
Hyo Seung JIN ; Sung Yong CHOI ; Jae Jin KO ; Ho Jin SON ; Hyo Won LEE ; Sang Youl LEE ; Jeong Kyu KIM
Korean Journal of Otolaryngology - Head and Neck Surgery 2015;58(12):865-869
BACKGROUND AND OBJECTIVES: The choice of optimal treatment methods among various gland preserving procedures including transoral surgery, sialendoscopy and extracorporeal lithotripsy for submandibular stones is mainly determined by the size of the stone. We tried to assess the accuracy of ultrasonography (USG) and computerized tomography (CT) for the preoperative estimation of submandibular gland stone size. SUBJECTS AND METHOD: We retrospectively reviewed the medical records of 251 patients who were treated for submandibular stones from January 2008 to December 2014. Eighty patients who checked both preoperative USG and CT were included. Preoperative USG and CT measurements of the submandibular stones were compared to postoperative measurements of removed stones. Effects of stone location and presence of acute infection on preoperative measurements were also assessed. RESULTS: The mean submandibular gland stone size was 6.60+/-3.8 mm by USG, 7.23+/-4.0 mm by neck CT and 7.89+/-4.7 mm by the postoperative measurement. USG and CT showed good correlation with the postoperative measurement (correlation coefficient 0.912 and 0.940, respectively). The location of stone and presence of combined infection showed no significant impact on the accuracy of USG and CT measurement. CONCLUSION: USG and neck CT showed high accuracy for predicting submandibular gland stone size. However, it should be taken into consideration that the stone size could be greater than that shown by preoperative measurement.
Humans
;
Lithotripsy
;
Medical Records
;
Neck
;
Retrospective Studies
;
Salivary Gland Calculi
;
Submandibular Gland*
;
Ultrasonography
10.Insufficient Experience in Thyroid Fine-Needle Aspiration Leads to Misdiagnosis of Thyroid Cancer.
Jung Il SON ; Sang Youl RHEE ; Jeong Taek WOO ; Won Seo PARK ; Jong Kyu BYUN ; Yu Jin KIM ; Ja Min BYUN ; Sang Ouk CHIN ; Suk CHON ; Seungjoon OH ; Sung Woon KIM ; Young Seol KIM
Endocrinology and Metabolism 2014;29(3):293-299
BACKGROUND: Fine-needle aspiration (FNA) of the thyroid is a widely accepted confirmatory test for thyroid cancer with high sensitivity and specificity. FNA is a simple procedure that is learned by many clinicians to enable accurate diagnosis of thyroid cancer. However, it is assumed that because the FNA test is a relatively simple procedure, its cytologic results are reliable regardless of the operator's experience. The aim of this study was to evaluate the differences in the diagnostic indices of FNA between operators with different levels of experience. METHODS: A total of 694 thyroid FNA specimens from 469 patients were reviewed, and were separated based on the experience of the clinicians who performed the procedure. One hundred and ninety were categorized in the experienced group, and 504 in the inexperienced group. All FNA results were then compared with histological data from surgically resected specimens, and the sample adequacy and diagnostic accuracy of the groups were compared. RESULTS: The age, gender, and nodule size and characteristics were similar in both groups. The sample adequacy rate was not significantly different between the experienced and nonexperienced groups (96.3% vs. 95.4%, P=0.682). However, the non-experienced group had a higher false-negative rate than the experienced group (6.4% vs. 17.2%, P=0.038), and the sensitivity of the FNA test also tended to be lower in the nonexperienced group (95.6% vs. 88.9%, P=0.065). CONCLUSION: These results suggest that FNA operators who have less experience may miss cases of thyroid cancer by performing the procedure incorrectly. As such, the experience of the FNA operator should be considered when diagnosing thyroid cancer. When clinicians are being trained in FNA, more effort should be made to increase the accuracy of the procedure; therefore, enhanced teaching programs and/or a more detailed feedback system are recommended.
Biopsy, Fine-Needle*
;
Diagnosis
;
Diagnostic Errors*
;
Humans
;
Sensitivity and Specificity
;
Thyroid Gland*
;
Thyroid Neoplasms*

Result Analysis
Print
Save
E-mail