1.Prescribing rate, healthcare utilization, and expenditure of older adults using potentially inappropriate medications in China: A nationwide cross-sectional study.
Zinan ZHAO ; Mengyuan FU ; Can LI ; Zhiwen GONG ; Ting LI ; Kexin LING ; Huangqianyu LI ; Jianchun LI ; Weihang CAO ; Dongzhe HONG ; Xin HU ; Luwen SHI ; Xiaodong GUAN ; Pengfei JIN
Chinese Medical Journal 2025;138(23):3163-3167
BACKGROUND:
The use of potentially inappropriate medications (PIMs) is a major concern for medication safety as it may entail more harm than potential benefits for older adults. This study aimed to explore the prescribing rate, healthcare utilization, and expenditure of older adults using PIMs in China.
METHODS:
A cross-sectional analysis was conducted using a national representative database of all medical insurance beneficiaries across China, extracting ambulatory visit records of adults aged 65 years and above between 2015 and 2017. Descriptive analysis was conducted to measure the rate of patients exposed to PIM, prescribing rate of each PIM, average annual outpatient visits per patient, average total medication costs for each visit, average annual cost of PIMs for each patient, and average annual medication costs for each patient. Generalized linear model with logit link function and binomial distribution was used to examine the adjusted associations between PIMs and independent variables.
RESULTS:
In total, 845,278 (33.2%) participants were identified to be exposed to at least one PIM. Patients aged 75-84 years (38.1%, 969,809/2,545,430) and ≥85 years (37.9%, 964,718/2,545,430) were more likely to be prescribed with PIMs. Beneficiaries of the Urban Employee Basic Medical Insurance (UEBMI) and living in eastern and southern regions were more frequently prescribed with PIMs. Compared with patients without PIM exposure (7.5 visits, drug cost of RMB 1545.0 Yuan), patients with PIM exposure showed higher adjusted average annual number of outpatient visits (10.7 visits, β = 3.228, 95% confidence interval [CI] = 3.196-3.261) and higher annual drug costs (RMB 2461.8 Yuan, Coef. = 916.864, 95% CI = RMB 906.292-927.436 Yuan).
CONCLUSIONS
The results showed that the use of PIM among older adults was common in China. This study suggests that the use of PIM could be considered as a clear target, pending multidimensional efforts, to promote rational prescribing for older adults.
Humans
;
Aged
;
Cross-Sectional Studies
;
Aged, 80 and over
;
Male
;
Female
;
China
;
Inappropriate Prescribing/economics*
;
Patient Acceptance of Health Care/statistics & numerical data*
;
Potentially Inappropriate Medication List/statistics & numerical data*
;
Health Expenditures/statistics & numerical data*
2.Prediction of quality markers for cough-relieving and phlegm-expelling effects of Kening Granules based on plasma pharmacology combined with network pharmacology and pharmacokinetics.
Qing-Qing CHEN ; Yuan-Xian ZHANG ; Qian WANG ; Jin-Ling ZHANG ; Lin ZHENG ; Yong HUANG ; Yang JIN ; Zi-Peng GONG ; Yue-Ting LI
China Journal of Chinese Materia Medica 2025;50(4):959-973
This study predicts the quality markers(Q-markers) for the cough-relieving and phlegm-expelling effects of Kening Granules based on pharmacodynamics, plasma drug chemistry, network pharmacology, and pharmacokinetics. Strong ammonia solution spray and phenol red secretion assays were employed to evaluate the cough-relieving and phlegm-expelling effects of Kening Granules. Twentysix absorbed prototype components of Kening Granules were identified by ultra high performance liquid chromatography coupled with QExactive Plus quadrupole/Orbitrap high resolution mass spectrometry(UHPLC-Q-Exactive Plus Orbitrap HRMS). Through network pharmacology, 11 potential active components were screened out for the cough-relieving and phlegm-expelling effects of Kening Granules. The 11 components acted on 40 common targets such as IL6, TLR4, and STAT3, which mainly participated in PI3K/Akt, HIF-1, and EGFR signaling pathways. Pharmacokinetic quantitative analysis was performed for 7 prototype components. Three compounds including azelaic acid, caffeic acid, and vanillin were identified as Q-markers for the cough-relieving and phlegm-expelling effects of Kening Granules based on their effectiveness, transmissibility, and measurability. The results of this study are of great significance for clarifying the pharmacological substance basis, optimizing the quality standards, and promoting the clinical application of Kening Granules.
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Cough/blood*
;
Male
;
Humans
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Biomarkers/blood*
;
Quality Control
;
Chromatography, High Pressure Liquid
;
Antitussive Agents/chemistry*
3.Research progress on interactions between medicinal plants and microorganisms.
Er-Jun WANG ; Ya-Long ZHANG ; Xiao-Hui MA ; Hua-Qian GONG ; Shao-Yang XI ; Gao-Sen ZHANG ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(12):3267-3280
The interactions between microorganisms and medicinal plants are crucial to the quality improvement of medicinal plants. Medicinal plants attract microorganisms to colonize by secreting specific compounds and provide niche and nutrient support for these microorganisms, with a symbiotic network formed. These microorganisms grow in the rhizosphere, phyllosphere, and endophytic tissues of plants and significantly improve the growth performance and medicinal component accumulation of medicinal plants by promoting nutrient uptake, enhancing disease resistance, and regulating the synthesis of secondary metabolites. Microorganisms are also widely used in the ecological planting of medicinal plants, and the growth conditions of medicinal plants are optimized by simulating the microbial effects in the natural environment. The interactions between microorganisms and medicinal plants not only significantly improve the yield and quality of medicinal plants but also enhance their geoherbalism, which is in line with the concept of green agriculture and eco-friendly development. This study reviewed the research results on the interactions between medicinal plants and microorganisms in recent years and focused on the analysis of the great potential of microorganisms in optimizing the growth environment of medicinal plants, regulating the accumulation of secondary metabolites, inducing systemic resistance, and promoting the ecological planting of medicinal plants. It provides a scientific basis for the research on the interactions between medicinal plants and microorganisms, the research and development of microbial agents, and the application of microorganisms in the ecological planting of medicinal plants and is of great significance for the quality improvement of medicinal plants and the green and sustainable development of TCM resources.
Plants, Medicinal/metabolism*
;
Bacteria/genetics*
;
Symbiosis
4.Evaluation of potential suitable habitats for Gastrodia elata in China under future climate and land use change scenarios.
Hua-Qian GONG ; Xu-Dong GUO ; Shao-Yang XI ; Gong-Han TU ; Fei CHEN ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(14):3887-3897
Climate and land use changes may significantly impact the habitat distribution of Gastrodia elata, an endangered traditional medicinal plant. Accurately predicting its future potential suitable habitats is crucial for its conservation and sustainable development. This study integrates current distribution data of G. elata with 56 environmental variables and uses the MaxEnt model to predict changes in its suitable habitats under current climate conditions and four future climate scenarios(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The results show that October precipitation and December minimum temperature are key environmental factors influencing its distribution. Under the current climate, optimal habitats for G. elata are concentrated in montane forest areas in Sichuan, Yunnan, Guizhou, and Hubei, which meet the species' requirements for understory growth. Across all future scenarios, the suitable habitat of G. elata consistently shows a stable northward shift, with a steady increase in suitable areas, extending to the middle and lower reaches of the Yangtze River and the Huang-Huai region, and even expanding into Liaoning, Jilin, and southern Heilongjiang. Land use analysis, taking into account the protection of arable land and the utilization of forest resources, indicates that by 2100, under future climate conditions, arable land in medium-to high-suitability areas is expected to increase by 30%-124%. While the conversion of non-suitable forest land into suitable habitats is projected to increase by 5%-52%, the growth of medium-to high-suitability areas within forests is relatively modest, ranging from 1% to 24%. These findings highlight the need to balance agricultural expansion with forest resource conservation to ensure the long-term sustainability of G. elata and provide scientific guidance for future suitable habitat management.
Ecosystem
;
China
;
Climate Change
;
Gastrodia/growth & development*
;
Conservation of Natural Resources
;
Plants, Medicinal/growth & development*
5.Unveiling nonribosomal peptide synthetases from the ergot fungus Claviceps purpurea involved in the formation of diverse ergopeptines.
Jing-Jing CHEN ; Ting GONG ; Wei-Bo WANG ; Tian-Jiao CHEN ; Jin-Ling YANG ; Ping ZHU
Acta Pharmaceutica Sinica B 2025;15(6):3321-3337
Ergopeptines or their derivatives are widely used for treating neurodegenerative and cerebrovascular diseases. The nonribosomal peptide synthetase-d-lysergyl peptide synthetase A (LPSA) determines ergopeptine formation but the detailed mechanism remains to be elucidated. Here, we characterized two LPSAs from Claviceps purpurea Cp-1 strain through heterologous expression in Aspergillus nidulans feeding with d-lysergic acid. We proved that Cp-LPSA1 catalyzed the formation of ergocornine, α-ergocryptine, and β-ergocryptine, precisely controlled by the substrate specificity of its three modules. Cp-LPSA2 was initially inactive but could be restored to catalyze α-ergosine formation. Using this platform, we validated that P1-LPSA1 and P1-LPSA2 from the reported C. purpurea P1 strain catalyzed ergotamine and α-ergocryptine formation, respectively. Typically, the non-ribosomal peptide codes implicated in every module of the LPSAs were defined and elucidated, in which certain key residues could play a switched role for substrate specificity and product interconversion. By constructing chimeric LPSAs through module assembly, the production of the desired ergopeptines was achieved. Notably, 1.46 mg/L of α-ergocryptine and 1.09 mg/L of ergotamine were produced respectively by mixed-culture of C. paspali No. 24 (fermentation supernatant) and the recombinants of A. nidulans. Our findings provide insights into the biosynthetic mechanism of ergopeptines and lay a foundation for directed ergopeptine biosynthesis.
6.Research progress on protein engineering technology and its application in the synthesis biology of medicinal natural products
Xiao-yan SUN ; Jing-jing CHEN ; Tian-jiao CHEN ; Ting GONG ; Jin-ling YANG ; Ping ZHU
Acta Pharmaceutica Sinica 2024;59(6):1601-1615
Natural products are important sources of drug discovery. However, the traditional methods of extraction and isolation, as well as chemical synthesis for obtaining natural products are associated with issues such as operational complexity, high costs, low efficiency, and environmental pollution. Constructing microbial cell factories through synthetic biology methods to produce medicinal natural products has the advantages of high efficiency, low cost, and environmental protection. Nevertheless, the scope and yield improvement of the products are limited by the limitations of enzymes in microbial cell factories. Protein engineering is considered one of the most effective approaches to overcome these limitations. This article introduces commonly used methods of protein engineering technology and summarizes its specific applications in improving enzyme performance, modifying the enzymatic environment, and promoting the development of synthetic biology tools in the field of pharmaceutical natural product synthesis. Furthermore, it analyzes the current bottlenecks and challenges in protein engineering and looks forward to its future application prospects, offering insights for the development and practical use of protein engineering technology.
7.Cell softness reveals tumorigenic potential via ITGB8/AKT/glycolysis signaling in a mice model of orthotopic bladder cancer
Shi QIU ; Yaqi QIU ; Linghui DENG ; Ling NIE ; Liming GE ; Xiaonan ZHENG ; Di JIN ; Kun JIN ; Xianghong ZHOU ; Xingyang SU ; Boyu CAI ; Jiakun LI ; Xiang TU ; Lina GONG ; Liangren LIU ; Zhenhua LIU ; Yige BAO ; Jianzhong AI ; Tianhai LIN ; Lu YANG ; Qiang WEI
Chinese Medical Journal 2024;137(2):209-221
Background::Bladder cancer, characterized by a high potential of tumor recurrence, has high lifelong monitoring and treatment costs. To date, tumor cells with intrinsic softness have been identified to function as cancer stem cells in several cancer types. Nonetheless, the existence of soft tumor cells in bladder tumors remains elusive. Thus, our study aimed to develop a microbarrier microfluidic chip to efficiently isolate deformable tumor cells from distinct types of bladder cancer cells.Methods::The stiffness of bladder cancer cells was determined by atomic force microscopy (AFM). The modified microfluidic chip was utilized to separate soft cells, and the 3D Matrigel culture system was to maintain the softness of tumor cells. Expression patterns of integrin β8 (ITGB8), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) were determined by Western blotting. Double immunostaining was conducted to examine the interaction between F-actin and tripartite motif containing 59 (TRIM59). The stem-cell-like characteristics of soft cells were explored by colony formation assay and in vivo studies upon xenografted tumor models. Results::Using our newly designed microfluidic approach, we identified a small fraction of soft tumor cells in bladder cancer cells. More importantly, the existence of soft tumor cells was confirmed in clinical human bladder cancer specimens, in which the number of soft tumor cells was associated with tumor relapse. Furthermore, we demonstrated that the biomechanical stimuli arising from 3D Matrigel activated the F-actin/ITGB8/TRIM59/AKT/mTOR/glycolysis pathways to enhance the softness and tumorigenic capacity of tumor cells. Simultaneously, we detected a remarkable up-regulation in ITGB8, TRIM59, and phospho-AKT in clinical bladder recurrent tumors compared with their non-recurrent counterparts.Conclusions::The ITGB8/TRIM59/AKT/mTOR/glycolysis axis plays a crucial role in modulating tumor softness and stemness. Meanwhile, the soft tumor cells become more sensitive to chemotherapy after stiffening, that offers new insights for hampering tumor progression and recurrence.
8.The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells
Zhuo CHEN ; Meng-Wei YAO ; Xiang AO ; Qing-Jia GONG ; Yi YANG ; Jin-Xia LIU ; Qi-Zhou LIAN ; Xiang XU ; Ling-Jing ZUO
Chinese Journal of Traumatology 2024;27(1):1-10
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
9.Species-level Microbiota of Biting Midges and Ticks from Poyang Lake
Jian GONG ; Fei Fei WANG ; Qing Yang LIU ; Ji PU ; Zhi Ling DONG ; Hui Si ZHANG ; Zhou Zhen HUANG ; Yuan Yu HUANG ; Ben Ya LI ; Xin Cai YANG ; Meihui Yuan TAO ; Jun Li ZHAO ; Dong JIN ; Yun Li LIU ; Jing YANG ; Shan LU
Biomedical and Environmental Sciences 2024;37(3):266-277,中插1-中插3
Objective The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area,namely,Qunlu Practice Base,Peach Blossom Garden,and Huangtong Animal Husbandry,and whether vectors carry any bacterial pathogens that may cause diseases to humans,to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit(OPU)analysis,we characterized the species-level microbial community structure of two important vector species,biting midges and ticks,including 33 arthropod samples comprising 3,885 individuals,collected around Poyang Lake. Results A total of 662 OPUs were classified in biting midges,including 195 known species and 373 potentially new species,and 618 OPUs were classified in ticks,including 217 known species and 326 potentially new species.Surprisingly,OPUs with potentially pathogenicity were detected in both arthropod vectors,with 66 known species of biting midges reported to carry potential pathogens,including Asaia lannensis and Rickettsia bellii,compared to 50 in ticks,such as Acinetobacter lwoffii and Staphylococcus sciuri.We found that Proteobacteria was the most dominant group in both midges and ticks.Furthermore,the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria.Pantoea sp7 was predominant in biting midges,while Coxiella sp1 was enriched in ticks.Meanwhile,Coxiella spp.,which may be essential for the survival of Haemaphysalis longicornis Neumann,were detected in all tick samples.The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion Biting midges and ticks carry large numbers of known and potentially novel bacteria,and carry a wide range of potentially pathogenic bacteria,which may pose a risk of infection to humans and animals.The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.
10.Formulation and Analysis on the Standard of Construction of Medication Safety Culture
Wenjing HOU ; Su SHEN ; Aiping WEN ; Jin LU ; Jiancun ZHEN ; Wei ZHANG ; Dan MEI ; Zhicheng GONG ; Yubo WU ; Qunhong SHEN ; Weiyi FENG ; Ling TAN ; Yanhua ZHANG ; Fang LIU ; Xiaole ZHANG
Herald of Medicine 2024;43(7):1079-1083
The construction of a medication safety culture is important for medication safety management and rational drug use.The construction of medication safety culture standards is formulated based on relevant national policies and regulations,accreditation standards for hospitals,expert opinions,the current situation,and the development trend of the healthcare industry.With scientificity,general applicability,instructive guidance,and practicality,they standardized basic requirements,management processes,and improvement of the construction of medication safety culture.To facilitate understanding and the implementation of the standards,we describe the process of standards formulation and explain the key points of the standards.

Result Analysis
Print
Save
E-mail