1.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
2.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
3.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
4.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
5.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
6.Simulating the Effect of Junction Setup Error in Dual-Isocentric Volumetric Modulated Arc Therapy for Pelvic Radiotherapy with a Large Target
Hojeong LEE ; Dong Woon KIM ; Ji Hyeon JOO ; Yongkan KI ; Wontaek KIM ; Dahl PARK ; Jiho NAM ; Dong Hyeon KIM ; Hosang JEON
Progress in Medical Physics 2024;35(2):52-57
Purpose:
The use of two adjacent radiation beams to treat a lesion that is larger than the maximum field of a machine may lead to higher or lower dose distribution at the junction than expected. Therefore, evaluation of the junction dose is crucial for radiotherapy. Volumetric modulated arc therapy (VMAT) can effectively protect surrounding normal tissues by implementing a complex dose distribution; therefore, two adjacent VMAT fields can effectively treat large lesions. However, VMAT can lead to significant errors in the junction dose between fields if setup errors occur due to its highly complex dose distributions.
Methods:
In this study, setup errors of ±1, ±3, and ±5 mm were assumed during radiotherapy for treating large lesions in the lower abdomen, and their effects on the treatment dose distribution and target coverage were analyzed using gamma pass rate (GP) and homogeneity index (HI). All studies were performed using a computational simulation method based on our radiation treatment planning software.
Results:
Consequently, when the setup error was more than ±3 mm, most GP values using a 3%/3-mm criterion decreased by <90%. GP was independent of the direction of the field gap (FG), whereas HI values were relatively more affected by negative values for FG.
Conclusions
Therefore, the size and direction of setup errors should be carefully managed when performing dual-isocentric VMATs for large targets.
7.Simulating the Effect of Junction Setup Error in Dual-Isocentric Volumetric Modulated Arc Therapy for Pelvic Radiotherapy with a Large Target
Hojeong LEE ; Dong Woon KIM ; Ji Hyeon JOO ; Yongkan KI ; Wontaek KIM ; Dahl PARK ; Jiho NAM ; Dong Hyeon KIM ; Hosang JEON
Progress in Medical Physics 2024;35(2):52-57
Purpose:
The use of two adjacent radiation beams to treat a lesion that is larger than the maximum field of a machine may lead to higher or lower dose distribution at the junction than expected. Therefore, evaluation of the junction dose is crucial for radiotherapy. Volumetric modulated arc therapy (VMAT) can effectively protect surrounding normal tissues by implementing a complex dose distribution; therefore, two adjacent VMAT fields can effectively treat large lesions. However, VMAT can lead to significant errors in the junction dose between fields if setup errors occur due to its highly complex dose distributions.
Methods:
In this study, setup errors of ±1, ±3, and ±5 mm were assumed during radiotherapy for treating large lesions in the lower abdomen, and their effects on the treatment dose distribution and target coverage were analyzed using gamma pass rate (GP) and homogeneity index (HI). All studies were performed using a computational simulation method based on our radiation treatment planning software.
Results:
Consequently, when the setup error was more than ±3 mm, most GP values using a 3%/3-mm criterion decreased by <90%. GP was independent of the direction of the field gap (FG), whereas HI values were relatively more affected by negative values for FG.
Conclusions
Therefore, the size and direction of setup errors should be carefully managed when performing dual-isocentric VMATs for large targets.
8.A Study on the Characteristics of People With Severe Mental Illness in Seoul
Jiho KIM ; Hae-Woo LEE ; Mi YANG ; Hyo Been LEE ; Yong Lee JANG ; Eun Jin NA
Journal of Korean Neuropsychiatric Association 2024;63(1):49-56
Objectives:
Severe mental illness has become one of the leading concerns for the cost of health services. This study analyzed the demographic characteristics and compared the patterns of medical health service use according to the diagnosis of severe mental illness, including schizophrenia spectrum disease, bipolar disease, and major depressive disorder.
Methods:
The data from the National Health Insurance Corporation were analyzed, selecting subjects diagnosed at least once for severe mental illness between 2014 and 2019. Severe mental illness included the following: schizophrenia, schizotypal, and delusional disorders (F20– 29); manic episodes and bipolar affective disorder (F30–31); and moderate depressive episodes with psychotic features and recurrent depressive disorder (F32.3–F33). The demographic factors and patterns of medical services, such as outpatient, hospitalization, and re-admission differences, were compared according to the diagnostic categories.
Results:
This study included 842459 patients, with 39.6% people in F20–F29, 33.7% in F32.3– F33, and 26.8% in the F30–F31 category. There were significant differences in gender, age, insurance type, Charlson Comorbidity Index score, and economic level according to the diagnostic categories. The engagement of medical health services also showed significant differences among the diagnostic categories. F32.3–F33 showed higher engagement of outpatients than the out-groups, while F20–F29 showed a higher admission rate. The hospitalization duration was significantly longer in F20–F29, and the re-admission rate after discharge within one year was significantly higher in the same group.
Conclusion
This paper reviewed the differences in medical care utilization among severe mental illness. The result emphasizes the need for a mental health care system broadening to the community, facilitating psychosocial intervention, and case management.
9.Simulating the Effect of Junction Setup Error in Dual-Isocentric Volumetric Modulated Arc Therapy for Pelvic Radiotherapy with a Large Target
Hojeong LEE ; Dong Woon KIM ; Ji Hyeon JOO ; Yongkan KI ; Wontaek KIM ; Dahl PARK ; Jiho NAM ; Dong Hyeon KIM ; Hosang JEON
Progress in Medical Physics 2024;35(2):52-57
Purpose:
The use of two adjacent radiation beams to treat a lesion that is larger than the maximum field of a machine may lead to higher or lower dose distribution at the junction than expected. Therefore, evaluation of the junction dose is crucial for radiotherapy. Volumetric modulated arc therapy (VMAT) can effectively protect surrounding normal tissues by implementing a complex dose distribution; therefore, two adjacent VMAT fields can effectively treat large lesions. However, VMAT can lead to significant errors in the junction dose between fields if setup errors occur due to its highly complex dose distributions.
Methods:
In this study, setup errors of ±1, ±3, and ±5 mm were assumed during radiotherapy for treating large lesions in the lower abdomen, and their effects on the treatment dose distribution and target coverage were analyzed using gamma pass rate (GP) and homogeneity index (HI). All studies were performed using a computational simulation method based on our radiation treatment planning software.
Results:
Consequently, when the setup error was more than ±3 mm, most GP values using a 3%/3-mm criterion decreased by <90%. GP was independent of the direction of the field gap (FG), whereas HI values were relatively more affected by negative values for FG.
Conclusions
Therefore, the size and direction of setup errors should be carefully managed when performing dual-isocentric VMATs for large targets.
10.Simulating the Effect of Junction Setup Error in Dual-Isocentric Volumetric Modulated Arc Therapy for Pelvic Radiotherapy with a Large Target
Hojeong LEE ; Dong Woon KIM ; Ji Hyeon JOO ; Yongkan KI ; Wontaek KIM ; Dahl PARK ; Jiho NAM ; Dong Hyeon KIM ; Hosang JEON
Progress in Medical Physics 2024;35(2):52-57
Purpose:
The use of two adjacent radiation beams to treat a lesion that is larger than the maximum field of a machine may lead to higher or lower dose distribution at the junction than expected. Therefore, evaluation of the junction dose is crucial for radiotherapy. Volumetric modulated arc therapy (VMAT) can effectively protect surrounding normal tissues by implementing a complex dose distribution; therefore, two adjacent VMAT fields can effectively treat large lesions. However, VMAT can lead to significant errors in the junction dose between fields if setup errors occur due to its highly complex dose distributions.
Methods:
In this study, setup errors of ±1, ±3, and ±5 mm were assumed during radiotherapy for treating large lesions in the lower abdomen, and their effects on the treatment dose distribution and target coverage were analyzed using gamma pass rate (GP) and homogeneity index (HI). All studies were performed using a computational simulation method based on our radiation treatment planning software.
Results:
Consequently, when the setup error was more than ±3 mm, most GP values using a 3%/3-mm criterion decreased by <90%. GP was independent of the direction of the field gap (FG), whereas HI values were relatively more affected by negative values for FG.
Conclusions
Therefore, the size and direction of setup errors should be carefully managed when performing dual-isocentric VMATs for large targets.

Result Analysis
Print
Save
E-mail